A generalized computer vision approach to mapping crop fields in heterogeneous agricultural landscapes

Abstract Smallholder farms dominate in many parts of the world, particularly Sub-Saharan Africa. These systems are characterized by small, heterogeneous, and often indistinct field patterns, requiring a specialized methodology to map agricultural land cover. Using a variety of sites in South Africa, we present a new approach to mapping agricultural fields, based on efficient extraction of a vast set of simple, highly correlated, and interdependent features, followed by a random forest classifier. We achieved similar high performance across agricultural types, including the spectrally indistinct smallholder fields as well as the more easily distinguishable commercial fields, and demonstrated the ability to generalize performance across large geographic areas. In sensitivity analyses, we determined multi-temporal information provided greater gains in performance than the addition of multi-spectral bands available in DigitalGlobe Worldview-2 imagery.

[1]  Marco Madella,et al.  Land-use classification , 2016 .

[2]  Shiyoshi Yokoyama,et al.  Land use classification with textural analysis and the aggregation technique using multi-temporal JERS-1 L-band SAR images , 2001 .

[3]  Maria Cristina Rulli,et al.  Global land and water grabbing , 2013, Proceedings of the National Academy of Sciences.

[4]  A. Veldkamp,et al.  utomated high resolution mapping of coffee in Rwanda using an xpert Bayesian network , 2014 .

[5]  Senén Barro,et al.  Do we need hundreds of classifiers to solve real world classification problems? , 2014, J. Mach. Learn. Res..

[6]  P. Atkinson,et al.  Incorporating Spatial Variability Measures in Land-cover Classification using Random Forest , 2011 .

[7]  PE Pienaar,et al.  Typology of smallholder farming in South Africa’s former homelands : towards an appropriate classification system , 2013 .

[8]  Alan H. Strahler,et al.  A note on procedures used for accuracy assessment in land cover maps derived from AVHRR data , 2000 .

[9]  Lin Yan,et al.  Automated crop field extraction from multi-temporal Web Enabled Landsat Data , 2014 .

[10]  Melba M. Crawford,et al.  Active Learning: Any Value for Classification of Remotely Sensed Data? , 2013, Proceedings of the IEEE.

[11]  Cj Birch,et al.  Rainfed Farming Systems , 2011 .

[12]  J. Townshend,et al.  Global land cover classifications at 8 km spatial resolution: The use of training data derived from Landsat imagery in decision tree classifiers , 1998 .

[13]  Pinki Mondal,et al.  Mapping cropping intensity of smallholder farms: A comparison of methods using multiple sensors , 2013 .

[14]  D. Gale Johnson Report on the 1950 World Census of Agriculture , 1956 .

[15]  Johannes Roseboom,et al.  UNLOCKING AFRICA ’ S AGRICULTURAL POTENTIAL , 2016 .

[16]  Optimum Band Selection for Supervised Classification of Multispectral Data , 2007 .

[17]  Steffen Fritz,et al.  Cropland for sub‐Saharan Africa: A synergistic approach using five land cover data sets , 2011 .

[18]  Howard J. Sanders,et al.  Agriculture and Food , 1967 .

[19]  J. Morton The impact of climate change on smallholder and subsistence agriculture , 2007, Proceedings of the National Academy of Sciences.

[20]  K. Price,et al.  Optimal Landsat TM band combinations and vegetation indices for discrimination of six grassland types in eastern Kansas , 2002 .

[21]  P. D’Odorico,et al.  Food appropriation through large scale land acquisitions , 2014 .

[22]  P. Koohafkan,et al.  Enduring Farms: Climate Change, Smallholders and Traditional Farming Communities , 2008 .

[23]  M. Ashton,et al.  Hyperion, IKONOS, ALI, and ETM+ sensors in the study of African rainforests , 2004 .

[24]  Piotr Tokarczyk,et al.  Features, Color Spaces, and Boosting: New Insights on Semantic Classification of Remote Sensing Images , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[25]  Mahesh Pal,et al.  Random forest classifier for remote sensing classification , 2005 .

[26]  Roberta E. Martin,et al.  A Tale of Two “Forests”: Random Forest Machine Learning Aids Tropical Forest Carbon Mapping , 2014, PloS one.

[27]  Jos Boekhorst,et al.  Data mining in the Life Sciences with Random Forest: a walk in the park or lost in the jungle? , 2012, Briefings Bioinform..

[28]  John F. Mustard,et al.  Forest cover change in Miombo Woodlands: modeling land cover of African dry tropical forests with linear spectral mixture analysis , 2015 .

[29]  V. Rodriguez-Galiano,et al.  Land cover change analysis of a Mediterranean area in Spain using different sources of data: Multi-seasonal Landsat images, land surface temperature, digital terrain models and texture , 2012 .

[30]  Tom Fawcett,et al.  An introduction to ROC analysis , 2006, Pattern Recognit. Lett..

[31]  Antonio Criminisi,et al.  Object Class Segmentation using Random Forests , 2008, BMVC.

[32]  José Crespo,et al.  Theoretical aspects of morphological filters by reconstruction , 1995, Signal Process..

[33]  Joachim M. Buhmann,et al.  Neuron geometry extraction by perceptual grouping in ssTEM images , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[34]  Eric F. Wood,et al.  Changing water availability during the African maize-growing season, 1979-2010 , 2014 .

[35]  G. Alagarswamy,et al.  Spatial variation of crop yield response to climate change in East Africa , 2009 .

[36]  Joydeep Ghosh,et al.  Investigation of the random forest framework for classification of hyperspectral data , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[37]  Calogero Carletto,et al.  The Emperor has no Data ! Agricultural Statistics in Sub-Saharan Africa , 2013 .

[38]  Rick Mueller,et al.  Mapping global cropland and field size , 2015, Global change biology.

[39]  Kirsten Halsnæs,et al.  The development and climate nexus: the case of sub-Saharan Africa , 2003 .

[40]  VekslerOlga,et al.  Fast Approximate Energy Minimization via Graph Cuts , 2001 .

[41]  Roberto Cipolla,et al.  Semantic texton forests for image categorization and segmentation , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[42]  Charles X. Ling,et al.  Using AUC and accuracy in evaluating learning algorithms , 2005, IEEE Transactions on Knowledge and Data Engineering.

[43]  J A Swets,et al.  Measuring the accuracy of diagnostic systems. , 1988, Science.

[44]  Nils Chr. Stenseth,et al.  Sub‐saharan desertification and productivity are linked to hemispheric climate variability , 2001 .

[45]  Christopher Conrad,et al.  Analysis of uncertainty in multi-temporal object-based classification , 2015 .

[46]  P. Atkinson,et al.  Random Forest classification of Mediterranean land cover using multi-seasonal imagery and multi-seasonal texture , 2012 .

[47]  Thomas S. Jayne,et al.  Urbanization and farm size in Asia and Africa: Implications for food security and agricultural research , 2013 .

[48]  L. D. Estes,et al.  A platform for crowdsourcing the creation of representative, accurate landcover maps , 2016, Environ. Model. Softw..

[49]  D. R. Cutler,et al.  Utah State University From the SelectedWorks of , 2017 .

[50]  Andrew Newell,et al.  Farm Size , 2009 .

[51]  F. Rembold,et al.  Assessing drought probability for agricultural areas in Africa with coarse resolution remote sensing imagery , 2011 .

[52]  O. Dikshit,et al.  Improvement of classification in urban areas by the use of textural features: The case study of Lucknow city, Uttar Pradesh , 2001 .

[53]  Petra Döll,et al.  Global Patterns of Cropland Use Intensity , 2010, Remote. Sens..

[54]  Douglas Gollin,et al.  An overview and implications for policy , 2014 .

[55]  G. F. Hughes,et al.  On the mean accuracy of statistical pattern recognizers , 1968, IEEE Trans. Inf. Theory.

[56]  Mark A. Friedl,et al.  Estimating pixel-scale land cover classification confidence using nonparametric machine learning methods , 2001, IEEE Trans. Geosci. Remote. Sens..

[57]  O. B. Butusov,et al.  Textural Classification of Forest Types from Landsat 7 Imagery , 2003 .

[58]  Michael Oppenheimer,et al.  Projected climate impacts to South African maize and wheat production in 2055: a comparison of empirical and mechanistic modeling approaches , 2013, Global change biology.

[59]  Nilanjan Dey,et al.  A survey of image classification methods and techniques , 2014, 2014 International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT).

[60]  D. Roy,et al.  Image interpretation-guided supervised classification using nested segmentation , 2015 .

[61]  International Journal of Applied Earth Observation and Geoinformation , 2017 .

[62]  Konrad Schindler,et al.  Mapping of Agricultural Crops from Single High-Resolution Multispectral Images - Data-Driven Smoothing vs. Parcel-Based Smoothing , 2015, Remote. Sens..

[63]  Alan H. Strahler,et al.  Maximizing land cover classification accuracies produced by decision trees at continental to global scales , 1999, IEEE Trans. Geosci. Remote. Sens..

[64]  Taloustieteen laitos,et al.  Small-Scale Farmers in Liberalised Trade Environment , 2005 .

[65]  W. Cohen,et al.  Land cover mapping in an agricultural setting using multiseasonal Thematic Mapper data , 2001 .

[66]  Jitendra Malik,et al.  Representing and Recognizing the Visual Appearance of Materials using Three-dimensional Textons , 2001, International Journal of Computer Vision.

[67]  R. Colwell Remote sensing of the environment , 1980, Nature.

[68]  Robert A. Schowengerdt,et al.  A review and analysis of backpropagation neural networks for classification of remotely-sensed multi-spectral imagery , 1995 .

[69]  J. Paruelo,et al.  Land cover classification in the Argentine Pampas using multi-temporal Landsat TM data , 2003 .

[70]  R. Cook The Population Reference Bureau , 1953 .

[71]  Jon Atli Benediktsson,et al.  Classification and feature extraction for remote sensing images from urban areas based on morphological transformations , 2003, IEEE Trans. Geosci. Remote. Sens..

[72]  Steffen Fritz,et al.  Identifying and quantifying uncertainty and spatial disagreement in the comparison of Global Land Cover for different applications , 2008 .

[73]  Raymond Francis,et al.  Field demonstration of an instrument performing automatic classification of geologic surfaces. , 2014, Astrobiology.

[74]  Cordelia Schmid,et al.  Constructing models for content-based image retrieval , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[75]  Maria Cristina Rulli,et al.  Land grabbing: a preliminary quantification of economic impacts on rural livelihoods , 2014, Population and environment.

[76]  Thomas S. Jayne,et al.  Land pressures, the evolution of farming systems, and development strategies in Africa: A synthesis , 2014 .

[77]  Philip K. Thornton,et al.  Agriculture and food systems in sub-Saharan Africa in a 4°C+ world , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[78]  Steffen Fritz,et al.  Improved global cropland data as an essential ingredient for food security , 2015 .

[79]  J. Evans,et al.  Modeling Species Distribution and Change Using Random Forest , 2011 .

[80]  M. Hardy,et al.  Rainfed Farming Systems in South Africa , 2011 .

[81]  A. Prasad,et al.  Newer Classification and Regression Tree Techniques: Bagging and Random Forests for Ecological Prediction , 2006, Ecosystems.

[82]  Philip K. Thornton,et al.  The potential impacts of climate change on maize production in Africa and Latin America in 2055 , 2003 .

[83]  Paul A. Viola,et al.  Rapid object detection using a boosted cascade of simple features , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[84]  Yang Shao,et al.  Comparison of support vector machine, neural network, and CART algorithms for the land-cover classification using limited training data points , 2012 .

[85]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[86]  Johannes R. Sveinsson,et al.  Random Forests for land cover classification , 2006, Pattern Recognit. Lett..

[87]  Lorenzo Cotula,et al.  Deal or no deal: the outlook for agricultural land investment in Africa , 2009 .

[88]  Olga Veksler,et al.  Fast approximate energy minimization via graph cuts , 2001, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[89]  Onisimo Mutanga,et al.  Land-use/cover classification in a heterogeneous coastal landscape using RapidEye imagery: evaluating the performance of random forest and support vector machines classifiers , 2014 .

[90]  M. Walsh,et al.  Identifying potential synergies and trade-offs for meeting food security and climate change objectives in sub-Saharan Africa , 2010, Proceedings of the National Academy of Sciences.

[91]  David E. Bell,et al.  Alliance for a Green Revolution in Africa (AGRA) , 2008 .

[92]  Sucharita Gopal,et al.  Uncertainty and Confidence in Land Cover Classification Using a Hybrid Classifier Approach , 2004 .

[93]  MalikJitendra,et al.  Representing and Recognizing the Visual Appearance of Materials using Three-dimensional Textons , 2001 .

[94]  Philip S. Yu,et al.  Effective estimation of posterior probabilities: explaining the accuracy of randomized decision tree approaches , 2005, Fifth IEEE International Conference on Data Mining (ICDM'05).

[95]  Stefan Walk,et al.  BEYOND HAND-CRAFTED FEATURES IN REMOTE SENSING , 2013 .

[96]  Nathalie A. Cabrol,et al.  Smart, texture‐sensitive instrument classification for in situ rock and layer analysis , 2013 .

[97]  S. Goetz,et al.  Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps , 2012 .

[98]  Qihao Weng,et al.  A survey of image classification methods and techniques for improving classification performance , 2007 .

[99]  Giles M. Foody,et al.  Toward intelligent training of supervised image classifications: directing training data acquisition for SVM classification , 2004 .

[100]  Brief Oksana Nagayets Small farms : Current Status and Key Trends Information , 2005 .

[101]  D. L. Seen,et al.  Mapping Fragmented Agricultural Systems in the Sudano-Sahelian Environments of Africa Using Random Forest and Ensemble Metrics of Coarse Resolution MODIS Imagery , 2012 .

[102]  Scott N. Miller,et al.  High-resolution landcover classification using Random Forest , 2014 .

[103]  Vladimir Kolmogorov,et al.  An experimental comparison of min-cut/max- flow algorithms for energy minimization in vision , 2001, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[104]  R. Dwivedi,et al.  Textural analysis of IRS-1D panchromatic data for land cover classification , 2002 .

[105]  Alan H. Strahler,et al.  Fuzzy Neural Network Classification of Global Land Cover from a 1° AVHRR Data Set , 1999 .

[106]  Franklin C. Crow,et al.  Summed-area tables for texture mapping , 1984, SIGGRAPH.

[107]  Andrew Newell,et al.  Chapter 65 Farm Size , 2010 .

[108]  Pierre Defourny,et al.  A conceptual framework to define the spatial resolution requirements for agricultural monitoring using remote sensing , 2010 .

[109]  Kent A. Spackman,et al.  Signal Detection Theory: Valuable Tools for Evaluating Inductive Learning , 1989, ML.

[110]  Mario Chica-Olmo,et al.  An assessment of the effectiveness of a random forest classifier for land-cover classification , 2012 .

[111]  Xinhua Zhuang,et al.  Image Analysis Using Mathematical Morphology , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[112]  G. Shao,et al.  Mapping of boreal vegetation of a temperate mountain in China by multitemporal Landsat TM imagery , 2002 .

[113]  S. Saatchi,et al.  Application of multiscale texture in classifying JERS-1 radar data over tropical vegetation , 2002 .

[114]  Richard Szeliski,et al.  Computer Vision - Algorithms and Applications , 2011, Texts in Computer Science.

[115]  David B. Lobell,et al.  The use of satellite data for crop yield gap analysis , 2013 .