Does schizophrenia arise from oxidative dysregulation of parvalbumin-interneurons in the developing cortex?

[1]  M. Schwarz,et al.  Immune System and Schizophrenia. , 2010, Current immunology reviews.

[2]  P. Patterson Immune involvement in schizophrenia and autism: Etiology, pathology and animal models , 2009, Behavioural Brain Research.

[3]  Eugenio Rodriguez,et al.  The development of neural synchrony reflects late maturation and restructuring of functional networks in humans , 2009, Proceedings of the National Academy of Sciences.

[4]  Jessica A. Cardin,et al.  Driving fast-spiking cells induces gamma rhythm and controls sensory responses , 2009, Nature.

[5]  K. Deisseroth,et al.  Parvalbumin neurons and gamma rhythms enhance cortical circuit performance , 2009, Nature.

[6]  Ken Sugino,et al.  Transcriptional and Electrophysiological Maturation of Neocortical Fast-Spiking GABAergic Interneurons , 2009, The Journal of Neuroscience.

[7]  Z. J. Huang Activity‐dependent development of inhibitory synapses and innervation pattern: role of GABA signalling and beyond , 2009, The Journal of physiology.

[8]  M. Cuénod,et al.  Redox dysregulation, neurodevelopment, and schizophrenia , 2009, Current Opinion in Neurobiology.

[9]  Jon W. Johnson,et al.  Mg2+ Imparts NMDA Receptor Subtype Selectivity to the Alzheimer's Drug Memantine , 2009, The Journal of Neuroscience.

[10]  Michael Berk,et al.  Glutathione depletion in the brain disrupts short-term spatial memory in the Y-maze in rats and mice , 2009, Behavioural Brain Research.

[11]  Anthony A Grace,et al.  A Loss of Parvalbumin-Containing Interneurons Is Associated with Diminished Oscillatory Activity in an Animal Model of Schizophrenia , 2009, The Journal of Neuroscience.

[12]  J. Houlé,et al.  NMDA receptor subunit expression in GABAergic interneurons in the prefrontal cortex: Application of laser microdissection technique , 2009, Journal of Neuroscience Methods.

[13]  M. Behrens,et al.  Interleukin-6 Mediates the Increase in NADPH-Oxidase in the Ketamine Model of Schizophrenia , 2008, The Journal of Neuroscience.

[14]  P. Jonas,et al.  Postnatal Differentiation of Basket Cells from Slow to Fast Signaling Devices , 2008, The Journal of Neuroscience.

[15]  Jozsi Z. Jalics,et al.  NMDA receptor-dependent switching between different gamma rhythm-generating microcircuits in entorhinal cortex , 2008, Proceedings of the National Academy of Sciences.

[16]  Kenneth M. Johnson,et al.  Postnatal Phencyclidine Administration Selectively Reduces Adult Cortical Parvalbumin-Containing Interneurons , 2008, Neuropsychopharmacology.

[17]  W. Singer,et al.  The role of oscillations and synchrony in cortical networks and their putative relevance for the pathophysiology of schizophrenia. , 2008, Schizophrenia bulletin.

[18]  R. Traub,et al.  Region-specific changes in gamma and beta2 rhythms in NMDA receptor dysfunction models of schizophrenia. , 2008, Schizophrenia bulletin.

[19]  D. Lewis,et al.  GABA neurons and the mechanisms of network oscillations: implications for understanding cortical dysfunction in schizophrenia. , 2008, Schizophrenia bulletin.

[20]  M. Cuénod,et al.  N-Acetyl Cysteine as a Glutathione Precursor for Schizophrenia—A Double-Blind, Randomized, Placebo-Controlled Trial , 2008, Biological Psychiatry.

[21]  Reto Meuli,et al.  Glutathione Precursor, N-Acetyl-Cysteine, Improves Mismatch Negativity in Schizophrenia Patients , 2008, Neuropsychopharmacology.

[22]  Yuchun Zhang,et al.  Prolonged exposure to NMDAR antagonist suppresses inhibitory synaptic transmission in prefrontal cortex. , 2008, Journal of neurophysiology.

[23]  T. Braver,et al.  Executive Functioning Component Mechanisms and Schizophrenia , 2008, Biological Psychiatry.

[24]  Kim Fejgin,et al.  Nitric Oxide Signaling in the Medial Prefrontal Cortex is Involved in the Biochemical and Behavioral Effects of Phencyclidine , 2008, Neuropsychopharmacology.

[25]  W. Slikker,et al.  Strategies and Experimental Models for Evaluating Anesthetics: Effects on the Developing Nervous System , 2008, Anesthesia and analgesia.

[26]  D. Javitt,et al.  Circuit-based framework for understanding neurotransmitter and risk gene interactions in schizophrenia , 2008, Trends in Neurosciences.

[27]  Urs Meyer,et al.  Adult brain and behavioral pathological markers of prenatal immune challenge during early/middle and late fetal development in mice , 2008, Brain, Behavior, and Immunity.

[28]  P. Ghazal,et al.  Synaptic NMDA receptor activity boosts intrinsic antioxidant defenses , 2008, Nature Neuroscience.

[29]  Kevin L Quick,et al.  Ketamine-Induced Loss of Phenotype of Fast-Spiking Interneurons Is Mediated by NADPH-Oxidase , 2007, Science.

[30]  B. Moghaddam,et al.  NMDA Receptor Hypofunction Produces Opposite Effects on Prefrontal Cortex Interneurons and Pyramidal Neurons , 2007, The Journal of Neuroscience.

[31]  A. Grace,et al.  Aberrant Hippocampal Activity Underlies the Dopamine Dysregulation in an Animal Model of Schizophrenia , 2007, The Journal of Neuroscience.

[32]  T. Werge,et al.  Impaired glutathione synthesis in schizophrenia: Convergent genetic and functional evidence , 2007, Proceedings of the National Academy of Sciences.

[33]  K. Mirnics,et al.  Maternal Immune Activation Alters Fetal Brain Development through Interleukin-6 , 2007, The Journal of Neuroscience.

[34]  Satoshi Kida,et al.  Dominant-negative DISC1 transgenic mice display schizophrenia-associated phenotypes detected by measures translatable to humans , 2007, Proceedings of the National Academy of Sciences.

[35]  Yukihiro Noda,et al.  Phencyclidine animal models of schizophrenia: Approaches from abnormality of glutamatergic neurotransmission and neurodevelopment , 2007, Neurochemistry International.

[36]  G. Knott,et al.  GAD67-Mediated GABA Synthesis and Signaling Regulate Inhibitory Synaptic Innervation in the Visual Cortex , 2007, Neuron.

[37]  F. Schenk,et al.  Transitory glutathione deficit during brain development induces cognitive impairment in juvenile and adult rats: Relevance to schizophrenia , 2007, Neurobiology of Disease.

[38]  V. Calhoun,et al.  Aberrant "default mode" functional connectivity in schizophrenia. , 2007, The American journal of psychiatry.

[39]  B. Rappaport,et al.  Use of Anesthetic Agents in Neonates and Young Children , 2007, Anesthesia and analgesia.

[40]  S. Snyder,et al.  Nitric oxide S-nitrosylates serine racemase, mediating feedback inhibition of d-serine formation , 2007, Proceedings of the National Academy of Sciences.

[41]  Masatoshi Tanaka,et al.  Effect of MK-801 and ketamine on hydroxyl radical generation in the posterior cingulate and retrosplenial cortex of free-moving mice, as determined by in vivo microdialysis , 2007, Pharmacology Biochemistry and Behavior.

[42]  S. Lipton,et al.  Redox regulation of neuronal survival mediated by electrophilic compounds , 2007, Trends in Neurosciences.

[43]  R. Roth,et al.  Repeated phencyclidine in monkeys results in loss of parvalbumin-containing axo-axonic projections in the prefrontal cortex , 2007, Psychopharmacology.

[44]  M. Cuénod,et al.  Synaptic plasticity impairment and hypofunction of NMDA receptors induced by glutathione deficit: Relevance to schizophrenia , 2006, Neuroscience.

[45]  E. Klann,et al.  Sources and targets of reactive oxygen species in synaptic plasticity and memory. , 2006, Antioxidants & redox signaling.

[46]  D. Butterfield Oxidative stress in neurodegenerative disorders. , 2006, Antioxidants & redox signaling.

[47]  August G. Wang,et al.  Schizophrenia and oxidative stress: glutamate cysteine ligase modifier as a susceptibility gene. , 2006, American journal of human genetics.

[48]  Lawrence H Snyder,et al.  Effects of the NMDA Antagonist Ketamine on Task-Switching Performance: Evidence for Specific Impairments of Executive Control , 2006, Neuropsychopharmacology.

[49]  Kuei Yuan Tseng,et al.  Dopamine modulation of prefrontal cortical interneurons changes during adolescence. , 2006, Cerebral cortex.

[50]  Robert W. McCarley,et al.  A Pharmacological Model for Psychosis Based on N-methyl-D-aspartate Receptor Hypofunction: Molecular, Cellular, Functional and Behavioral Abnormalities , 2006, Biological Psychiatry.

[51]  Alan S. Brown,et al.  Prenatal infection as a risk factor for schizophrenia. , 2006, Schizophrenia bulletin.

[52]  T. Bártfai,et al.  A Specific Role for NR2A-Containing NMDA Receptors in the Maintenance of Parvalbumin and GAD67 Immunoreactivity in Cultured Interneurons , 2006, The Journal of Neuroscience.

[53]  R. Rodriguiz,et al.  Monoaminergic dysregulation in glutathione-deficient mice: Possible relevance to schizophrenia? , 2005, Neuroscience.

[54]  Ravinder Reddy,et al.  Altered Glutathione Redox State in Schizophrenia , 2005, Disease markers.

[55]  H. Holcomb,et al.  Effects of Noncompetitive NMDA Receptor Blockade on Anterior Cingulate Cerebral Blood Flow in Volunteers with Schizophrenia , 2005, Neuropsychopharmacology.

[56]  A. Belger,et al.  Comparative and interactive human psychopharmacologic effects of ketamine and amphetamine: implications for glutamatergic and dopaminergic model psychoses and cognitive function. , 2005, Archives of general psychiatry.

[57]  R. Anwyl,et al.  Synaptic plasticity disruption by amyloid beta protein: modulation by potential Alzheimer's disease modifying therapies. , 2005, Biochemical Society transactions.

[58]  S. Borelli,et al.  The association of the HLA in patients with schizophrenia, schizoaffective disorder, and in their biological relatives , 2005, Schizophrenia Research.

[59]  J L Rapoport,et al.  The neurodevelopmental model of schizophrenia: update 2005 , 2005, Molecular Psychiatry.

[60]  D. Lewis,et al.  Cortical inhibitory neurons and schizophrenia , 2005, Nature Reviews Neuroscience.

[61]  B. Moghaddam,et al.  Systemic and prefrontal cortical NMDA receptor blockade differentially affect discrimination learning and set-shift ability in rats. , 2005, Behavioral neuroscience.

[62]  B. Morris,et al.  Chronic phencyclidine administration induces schizophrenia-like changes in N-acetylaspartate and N-acetylaspartylglutamate in rat brain , 2005, Schizophrenia Research.

[63]  B. Moghaddam,et al.  Transient N-methyl-D-aspartate receptor blockade in early development causes lasting cognitive deficits relevant to schizophrenia , 2005, Biological Psychiatry.

[64]  B. Morris,et al.  PCP: from pharmacology to modelling schizophrenia. , 2005, Current opinion in pharmacology.

[65]  A. Becker,et al.  Repeated application of ketamine to rats induces changes in the hippocampal expression of parvalbumin, neuronal nitric oxide synthase and cFOS similar to those found in human schizophrenia , 2004, Neuroscience.

[66]  Karel Svoboda,et al.  Subcellular domain-restricted GABAergic innervation in primary visual cortex in the absence of sensory and thalamic inputs , 2004, Nature Neuroscience.

[67]  H. Markram,et al.  Interneurons of the neocortical inhibitory system , 2004, Nature Reviews Neuroscience.

[68]  E. Aizenman,et al.  Amino terminal domain regulation of NMDA receptor function. , 2004, European journal of pharmacology.

[69]  Brian J. Morris,et al.  The atypical antipsychotic drug clozapine enhances chronic PCP-induced regulation of prefrontal cortex 5-HT2A receptors , 2004, Neuropharmacology.

[70]  S. Eggan,et al.  Postnatal Development of Prefrontal Inhibitory Circuits and the Pathophysiology of Cognitive Dysfunction in Schizophrenia , 2004, Annals of the New York Academy of Sciences.

[71]  R. Gavrieli,et al.  Overproduction of neutrophil radical oxygen species correlates with negative symptoms in schizophrenic patients: parallel studies on neutrophil chemotaxis, superoxide production and bactericidal activity , 2003, Psychiatry Research.

[72]  S. Eggan,et al.  Postnatal development of pre‐ and postsynaptic GABA markers at chandelier cell connections with pyramidal neurons in monkey prefrontal cortex , 2003, The Journal of comparative neurology.

[73]  H. Takase,et al.  Postoperative confusion in schizophrenic patients is affected by interleukin-6. , 2003, Journal of clinical anesthesia.

[74]  R. Yuste,et al.  Ca2+ imaging of mouse neocortical interneurone dendrites: Contribution of Ca2+‐permeable AMPA and NMDA receptors to subthreshold Ca2+dynamics , 2003, The Journal of physiology.

[75]  A. Sampson,et al.  Gene Expression Deficits in a Subclass of GABA Neurons in the Prefrontal Cortex of Subjects with Schizophrenia , 2003, The Journal of Neuroscience.

[76]  G. Reynolds,et al.  N-acetylaspartate and N-Acetylaspartylglutamate deficits in superior temporal cortex in schizophrenia and bipolar disorder: a postmortem study , 2003, Biological Psychiatry.

[77]  B. Moghaddam,et al.  Activation of Glutamate Neurotransmission in the Prefrontal Cortex Sustains the Motoric and Dopaminergic Effects of Phencyclidine , 2003, Neuropsychopharmacology.

[78]  B. Morris,et al.  Induction of Metabolic Hypofunction and Neurochemical Deficits after Chronic Intermittent Exposure to Phencyclidine: Differential Modulation by Antipsychotic Drugs , 2003, Neuropsychopharmacology.

[79]  Kenneth M. Johnson,et al.  Blockade of Phencyclidine-Induced Cortical Apoptosis and Deficits in Prepulse Inhibition by M40403, a Superoxide Dismutase Mimetic , 2003, Journal of Pharmacology and Experimental Therapeutics.

[80]  B. Morris,et al.  Acute and delayed effects of phencyclidine upon mRNA levels of markers of glutamatergic and GABAergic neurotransmitter function in the rat brain , 2002, Synapse.

[81]  J. Olney,et al.  New insights and new issues in developmental neurotoxicology. , 2002, Neurotoxicology.

[82]  X. Zhang,et al.  Elevated interleukin-2, interleukin-6 and interleukin-8 serum levels in neuroleptic-free schizophrenia: association with psychopathology , 2002, Schizophrenia Research.

[83]  A. Godzik,et al.  Cysteine regulation of protein function – as exemplified by NMDA-receptor modulation , 2002, Trends in Neurosciences.

[84]  W. A. Wilson,et al.  NMDA Receptor Antagonists Disinhibit Rat Posterior Cingulate and Retrosplenial Cortices: A Potential Mechanism of Neurotoxicity , 2002, The Journal of Neuroscience.

[85]  S. Xia,et al.  The Estrogen Receptor Is Not Essential for All Estrogen Neuroprotection: New Evidence from a New Analog , 2002, Neurobiology of Disease.

[86]  R. Gainetdinov,et al.  Genetic animal models: focus on schizophrenia , 2001, Trends in Neurosciences.

[87]  T. Sejnowski,et al.  Correlated neuronal activity and the flow of neural information , 2001, Nature Reviews Neuroscience.

[88]  C. Beasley,et al.  GABAergic neuronal subtypes in the human frontal cortex — development and deficits in schizophrenia , 2001, Journal of Chemical Neuroanatomy.

[89]  F. Benes,et al.  GABAergic Interneurons: Implications for Understanding Schizophrenia and Bipolar Disorder , 2001, Neuropsychopharmacology.

[90]  T. Pollmächer,et al.  Effects of antipsychotic drugs on cytokine networks. , 2000, Journal of psychiatric research.

[91]  H Nawa,et al.  Cytokine and growth factor involvement in schizophrenia—support for the developmental model , 2000, Molecular Psychiatry.

[92]  P Boesiger,et al.  Schizophrenia: glutathione deficit in cerebrospinal fluid and prefrontal cortex in vivo , 2000, The European journal of neuroscience.

[93]  G. Akopian,et al.  Chronic Brain Oxidation in a Glutathione Peroxidase Knockout Mouse Model Results in Increased Resistance to Induced Epileptic Seizures , 2000, Experimental Neurology.

[94]  H. Monyer,et al.  Differential Expression of Group I Metabotropic Glutamate Receptors in Functionally Distinct Hippocampal Interneurons , 2000, The Journal of Neuroscience.

[95]  F. Sharp,et al.  Bilateral blockade of NMDA receptors in anterior thalamus by dizocilpine (MK‐801) injures pyramidal neurons in rat retrosplenial cortex , 2000, The European journal of neuroscience.

[96]  P. Goldman-Rakic,et al.  Destruction and Creation of Spatial Tuning by Disinhibition: GABAA Blockade of Prefrontal Cortical Neurons Engaged by Working Memory , 2000, The Journal of Neuroscience.

[97]  M. Schwarz,et al.  The Immune System and Schizophrenia: An Integrative View , 2000, Annals of the New York Academy of Sciences.

[98]  J. Newcomer,et al.  NMDA receptor hypofunction model of schizophrenia. , 1999, Journal of psychiatric research.

[99]  P. Goldman-Rakic,et al.  The physiological approach: functional architecture of working memory and disordered cognition in schizophrenia , 1999, Biological Psychiatry.

[100]  R. Roth,et al.  The Neuropsychopharmacology of Phencyclidine: From NMDA Receptor Hypofunction to the Dopamine Hypothesis of Schizophrenia , 1999, Neuropsychopharmacology.

[101]  R. Pioli,et al.  The inflammatory response system in treatment-resistant schizophrenia: increased serum interleukin-6 , 1998, Schizophrenia Research.

[102]  A. Volterra,et al.  Neuronal and Glial Glutamate Transporters Possess an SH‐based Redox Regulatory Mechanism , 1997, The European journal of neuroscience.

[103]  M. C. Angulo,et al.  Molecular and Physiological Diversity of Cortical Nonpyramidal Cells , 1997, The Journal of Neuroscience.

[104]  J. Gilmore,et al.  Exposure to infection and brain development: cytokines in the pathogenesis of schizophrenia , 1997, Schizophrenia Research.

[105]  C. Beasley,et al.  Parvalbumin-immunoreactive neurons are reduced in the prefrontal cortex of schizophrenics , 1997, Schizophrenia Research.

[106]  J. Mege,et al.  Elevated circulating levels of IL-6 in schizophrenia , 1996, Schizophrenia Research.

[107]  M. Hasselmo,et al.  NMDA-dependent modulation of CA1 local circuit inhibition , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[108]  A. Bâ,et al.  Psychomotor functions in developing rats: Ontogenetic approach to structure-function relationships , 1995, Neuroscience & Biobehavioral Reviews.

[109]  A. Volterra,et al.  Reactive Oxygen Species Inhibit High‐Affinity Glutamate Uptake: Molecular Mechanism and Neuropathological Implications , 1994, Annals of the New York Academy of Sciences.

[110]  H. Monyer,et al.  NMDA receptor channels: Subunit-specific potentiation by reducing agents , 1994, Neuron.

[111]  P S Goldman-Rakic,et al.  Functional synergism between putative gamma-aminobutyrate-containing neurons and pyramidal neurons in prefrontal cortex. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[112]  B. Rabin,et al.  Serum interleukin-6 concentration in schizophrenia: Elevation associated with duration of illness , 1994, Psychiatry Research.

[113]  J. Bachevalier,et al.  Maturation of medial temporal lobe memory functions in rodents, monkeys, and humans , 1993, Hippocampus.

[114]  J. Kleinman,et al.  Selective abnormalities of prefrontal serotonergic receptors in schizophrenia. A postmortem study. , 1993, Archives of general psychiatry.

[115]  Y. Kubota,et al.  Correlation of physiological subgroupings of nonpyramidal cells with parvalbumin- and calbindinD28k-immunoreactive neurons in layer V of rat frontal cortex. , 1993, Journal of neurophysiology.

[116]  E. Pileblad,et al.  Reduction of Brain Glutathione by l‐Buthionine Sulfoximine Potentiates the Dopamine‐Depleting Action of 6‐Hydroxydopamine in Rat Striatum , 1989, Journal of neurochemistry.

[117]  G. E. Alexander,et al.  Functional development of the dorsolateral prefrontal cortex: An analysis utilizing reversible cryogenic depression , 1978, Brain Research.

[118]  N. J. Giarman Neuropharmacology , 1961, The Yale Journal of Biology and Medicine.

[119]  P. Jonas,et al.  Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks , 2007, Nature Reviews Neuroscience.

[120]  R. Swanson,et al.  Neuronal glutathione deficiency and age-dependent neurodegeneration in the EAAC1 deficient mouse , 2006, Nature Neuroscience.

[121]  R. Yuste,et al.  Ca 2 + imaging of mouse neocortical interneurone dendrites : Contribution of Ca 2 +-permeable AMPA and NMDA receptors to subthreshold Ca 2 + dynamics , 2003 .

[122]  J. Copin,et al.  Modulation of oxygen-radical-scavenging enzymes by oxidative stress in primary cultures of rat astroglial cells. , 1996, Developmental neuroscience.

[123]  I. Feinberg,et al.  Schizophrenia: caused by a fault in programmed synaptic elimination during adolescence? , 1982, Journal of psychiatric research.