Negative probabilities and Counterfactual Reasoning on the double-slit Experiment

In this paper we attempt to establish a theory of negative (quasi) probability distributions from fundamental principles and apply it to the study of the double-slit experiment in quantum mechanics. We do so in a way that preserves the main conceptual issues intact but allow for a clearer analysis, by representing the double-slit experiment in terms of the Mach-Zehnder interferometer, and show that the main features of quantum systems relevant to the double-slit are present also in the Mach-Zehnder. This converts the problem from a continuous to a discrete random variable representation. We then show that, for the Mach-Zehnder interferometer, negative probabilities do not exist that are consistent with interference and which-path information, contrary to what Feynman believed. However, consistent with Scully et al.'s experiment, if we reduce the amount of experimental information about the system and rely on counterfactual reasoning, a joint negative probability distribution can be constructed for the Mach-Zehnder experiment.

[1]  Victor Veitch,et al.  Contextuality Supplies the Magic for Quantum Computation , 2015, 2015 IEEE International Symposium on Multiple-Valued Logic.

[2]  Ehtibar N. Dzhafarov,et al.  Measuring Observable Quantum Contextuality , 2015, QI.

[3]  Ehtibar N. Dzhafarov,et al.  Contextuality in Three Types of Quantum-Mechanical Systems , 2014, Foundations of Physics.

[4]  Jan-AAke Larsson,et al.  Contextuality in Three Types of Quantum-Mechanical Systems , 2014, 1411.2244.

[5]  Guido Bacciagaluppi,et al.  Leggett-Garg Inequalities, Pilot Waves and Contextuality , 2014, 1409.4104.

[6]  Ehtibar N. Dzhafarov,et al.  Generalizing Bell-type and Leggett-Garg-type Inequalities to Systems with Signaling , 2014, 1407.2886.

[7]  Ehtibar N. Dzhafarov,et al.  Unifying Two Methods of Measuring Quantum Contextuality , 2014 .

[8]  Ehtibar N. Dzhafarov,et al.  Probabilistic Contextuality in EPR/Bohm-type Systems with Signaling Allowed , 2014, 1406.0243.

[9]  J. Acacio de Barros,et al.  Exploring non-signalling polytopes with negative probability , 2014, 1404.3831.

[10]  Gary Oas,et al.  Negative probabilities and counter-factual reasoning in quantum cognition , 2014, 1404.3921.

[11]  Samson Abramsky,et al.  An Operational Interpretation of Negative Probabilities and No-Signalling Models , 2014, Horizons of the Mind.

[12]  T. Paterek,et al.  Unified approach to contextuality, nonlocality, and temporal correlations , 2013, 1302.3502.

[13]  C. Garola,et al.  Finite Local Models for the GHZ Experiment , 2012, 1209.4028.

[14]  Ehtibar N. Dzhafarov,et al.  Random Variables Recorded under Mutually Exclusive Conditions: Contextuality-by-Default , 2013, ArXiv.

[15]  Jose Acacio de Barros,et al.  Decision Making for Inconsistent Expert Judgments Using Negative Probabilities , 2013, QI.

[16]  Ehtibar N. Dzhafarov,et al.  A Qualified Kolmogorovian Account of Probabilistic Contextuality , 2013, QI.

[17]  J. Yearsley,et al.  Negative probabilities, Fine's theorem, and linear positivity , 2013 .

[18]  Anthony J Short,et al.  Simulating all nonsignaling correlations via classical or quantum theory with negative probabilities. , 2013, Physical review letters.

[19]  Shengjun Wu,et al.  Negative probabilities and information gain in weak measurements , 2012, 1212.6324.

[20]  Ehtibar N. Dzhafarov,et al.  All-Possible-Couplings Approach to Measuring Probabilistic Context , 2012, PloS one.

[21]  J. Kujala,et al.  All-Possible-Couplings Approach to Measuring , 2013 .

[22]  M. Bhaskara Rao,et al.  Theory of Charges: A Study of Finitely Additive Measures , 2012 .

[23]  Caslav Brukner,et al.  Condition for macroscopic realism beyond the Leggett-Garg inequalities , 2012, 1207.3666.

[24]  Ehtibar N. Dzhafarov,et al.  Selectivity in Probabilistic Causality: Where Psychology Runs Into Quantum Physics , 2011, 1110.2388.

[25]  C. Garola,et al.  The Modified Bell Inequality and Its Physical Implications in the ESR Model , 2011 .

[26]  G. Meissner,et al.  Negative Probabilities in Financial Modeling , 2011 .

[27]  Samson Abramsky,et al.  The sheaf-theoretic structure of non-locality and contextuality , 2011, 1102.0264.

[28]  C. Garola,et al.  Generalized Observables, Bell’s Inequalities and Mixtures in the ESR Model for QM , 2010, 1001.4688.

[29]  Armin W. Schulz,et al.  Interpretations of probability , 2003 .

[30]  Mark Burgin,et al.  Interpretations of Negative Probabilities , 2010, 1008.1287.

[31]  C. Garola,et al.  A Hilbert Space Representation of Generalized Observables and Measurement Processes in the ESR Model , 2008, 0811.0531.

[32]  Patrick Suppes,et al.  Entanglement, Upper Probabilities and Decoherence in Quantum Mechanics , 2010 .

[33]  C. Garola,et al.  The ESR model: A proposal for a noncontextual and local Hilbert space extension of QM , 2009 .

[34]  R. Mould Experimental Test , 2008, 0801.1263.

[35]  Philippe Grangier,et al.  Experimental Realization of Wheeler's Delayed-Choice Gedanken Experiment , 2006, Science.

[36]  A. Khrennikov On negative probabilities. , 2007 .

[37]  Patrick Suppes,et al.  When are probabilistic explanations possible? , 2005, Synthese.

[38]  Patrick Suppes,et al.  Probabilistic Results for Six Detectors in a Three-Particle GHZ Experiment , 2001 .

[39]  Acacio De Barros J,et al.  Inequalities for dealing with detector inefficiencies in greenberger-horne-zeilinger-type experiments , 2000, Physical review letters.

[40]  P. Suppes,et al.  Inequalities for dealing with detector inefficiencies in greenberger-horne-zeilinger-type experiments , 2000, Physical review letters.

[41]  R. Mcweeny On the Einstein-Podolsky-Rosen Paradox , 2000 .

[42]  Patrick Suppes,et al.  A Collection of Probabilistic Hidden-Variable Theorems and Counterexamples , 1996, quant-ph/9610010.

[43]  P. Suppes,et al.  Violation of bell's inequalities with a local theory of photons , 1996, quant-ph/9606020.

[44]  P. Suppes,et al.  A Proposed Experiment Showing that Classical Fields Can Violate Bell's Inequalities , 1996, quant-ph/9606019.

[45]  Patrick Suppes,et al.  A particle theory of the Casimir effect , 1995, quant-ph/9510010.

[46]  Mark P. Silverman More than one mystery : explorations in quantum interference , 1995 .

[47]  Patrick Suppes,et al.  Diffraction with well-defined photon trajectories: A foundational analysis , 1994 .

[48]  Andrei Khrennikov,et al.  p-Adic Valued Distributions in Mathematical Physics , 1994 .

[49]  Walther,et al.  Feynman's approach to negative probability in quantum mechanics. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[50]  Terrence L. Fine,et al.  Upper and Lower Probability , 1994 .

[51]  Patrick Suppes,et al.  A random-walk approach to interference , 1994 .

[52]  A. Yu. Khrennikov p-Adic probability theory and its applications. The principle of statistical stabilization of frequencies , 1993 .

[53]  Patrick Suppes,et al.  Existence of hidden variables having only upper probabilities , 1991 .

[54]  A. Zeilinger,et al.  Going Beyond Bell’s Theorem , 2007, 0712.0921.

[55]  Garg,et al.  Quantum mechanics versus macroscopic realism: Is the flux there when nobody looks? , 1985, Physical review letters.

[56]  G. Roger,et al.  Experimental Test of Bell's Inequalities Using Time- Varying Analyzers , 1982 .

[57]  M. Scully,et al.  Quantum eraser: A proposed photon correlation experiment concerning observation and , 1982 .

[58]  A. Fine Hidden Variables, Joint Probability, and the Bell Inequalities , 1982 .

[59]  P. Grangier,et al.  Experimental Tests of Realistic Local Theories via Bell's Theorem , 1981 .

[60]  Patrick Suppes,et al.  When are Probabilistic Explanations Possible , 1981 .

[61]  B. S. Cirel'son Quantum generalizations of Bell's inequality , 1980 .

[62]  John Archibald Wheeler,et al.  The “Past” and the “Delayed-Choice” Double-Slit Experiment , 1978 .

[63]  J. Bell On the Problem of Hidden Variables in Quantum Mechanics , 1966 .

[64]  R. Feynman The Feynman lectures on physics : mainly mechanics, radiation, and heat / by Richard P. Feynman, Robert B. Leighton, Matthew Sands , 1963 .

[65]  Richard Phillips Feynman,et al.  Mainly mechanics, radiation, and heat , 1963 .

[66]  A. N. Kolmogorov,et al.  Foundations of the theory of probability , 1960 .

[67]  Andreas Blass,et al.  Negative probability , 1945, Mathematical Proceedings of the Cambridge Philosophical Society.

[68]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .