Metal Oxide Nanowire Preparation and Their Integration into Chemical Sensing Devices at the SENSOR Lab in Brescia

Metal oxide 1D nanowires are probably the most promising structures to develop cheap stable and selective chemical sensors. The purpose of this contribution is to review almost two-decades of research activity at the Sensor Lab Brescia on their preparation during by vapor solid (n-type In2O3, ZnO), vapor liquid solid (n-type SnO2 and p-type NiO) and thermal evaporation and oxidation (n-type ZnO, WO3 and p-type CuO) methods. For each material we’ve assessed the chemical sensing performance in relation to the preparation conditions and established a rank in the detection of environmental and industrial pollutants: SnO2 nanowires were effective in DMMP detection, ZnO nanowires in NO2, acetone and ethanol detection, WO3 for ammonia and CuO for ozone.

[1]  R. N. Mulik,et al.  Synthesis, structural, compositional, morphological and optoelectronic properties of tungsten oxide thin films , 2015, Journal of Materials Science: Materials in Electronics.

[2]  Benjamin J. Hansen,et al.  Transport, Analyte Detection, and Opto-Electronic Response of p-Type CuO Nanowires , 2010 .

[3]  E. Comini,et al.  Functional nanowires of tin oxide , 2007 .

[4]  Pietro Siciliano,et al.  Solvothermal, chloroalkoxide-based synthesis of monoclinic WO(3) quantum dots and gas-sensing enhancement by surface oxygen vacancies. , 2014, ACS applied materials & interfaces.

[5]  Matteo Ferroni,et al.  Hydrogen Gas Sensing Performance Of Pt/Sno2 Nanowires/Sic Mos Devices , 2008 .

[6]  Claes-Göran Granqvist,et al.  Electrochromic tungsten oxide films: Review of progress 1993–1998 , 2000 .

[7]  Changhyun Jin,et al.  H2S gas sensing properties of bare and Pd-functionalized CuO nanorods , 2012 .

[8]  Yiqian Wang,et al.  Effect of surface stresses on CuO nanowire growth in the thermal oxidation of copper , 2011 .

[9]  M. Pardo,et al.  Metal Oxide Nanowire and Thin-Film-Based Gas Sensors for Chemical Warfare Simulants Detection , 2008, IEEE Sensors Journal.

[10]  S. Preda,et al.  1D Oxide Nanostructures Obtained by Sol-Gel and Hydrothermal Methods , 2016 .

[11]  J. Yakhmi,et al.  Growth and gas-sensing studies of metal oxide semiconductor nanostructures , 2010 .

[12]  Sven Barth,et al.  Synthesis and applications of one-dimensional semiconductors , 2010 .

[13]  G. Sberveglieri,et al.  Orthorhombic Pbcn SnO2 nanowires for gas sensing applications , 2008 .

[14]  J. Maier,et al.  Nanoionics: ion transport and electrochemical storage in confined systems , 2005, Nature materials.

[15]  Matteo Ferroni,et al.  Nanostructured WO3 deposited by modified thermal evaporation for gas-sensing applications , 2005 .

[16]  P. Maddalena,et al.  On the mechanism of photoluminescence quenching in tin dioxide nanowires by NO2 adsorption , 2008 .

[17]  Xu-Guang Zheng,et al.  Lattice distortion and magnetolattice coupling in CuO , 2004 .

[18]  G. Lu,et al.  Detection of nitrogen dioxide down to ppb levels using flower-like tungsten oxide nanostructures under different annealing temperatures. , 2016, Journal of colloid and interface science.

[19]  Ying Wang,et al.  Nanostructures and Nanomaterials: Synthesis, Properties and Applications , 2004 .

[20]  A. Srivastava,et al.  The effect of growth parameters on the aspect ratio and number density of CuO nanorods , 2004 .

[21]  G. Sberveglieri,et al.  Controlled Growth and sensing properties of In2O3 nanowires , 2007 .

[22]  Matteo Ferroni,et al.  Synthesis and integration of tin oxide nanowires into an electronic nose , 2012 .

[23]  Dinesh K. Aswal,et al.  Sub-ppm H2S sensing at room temperature using CuO thin films , 2010 .

[24]  Zu Rong Dai,et al.  Novel Nanostructures of Functional Oxides Synthesized by Thermal Evaporation , 2003 .

[25]  Gas sensing properties of zinc oxide nanostructures prepared by thermal evaporation , 2007 .

[26]  T. Wang,et al.  Surface accumulation conduction controlled sensing characteristic of p-type CuO nanorods induced by oxygen adsorption , 2007 .

[27]  Ning Wang,et al.  Growth of nanowires , 2008 .

[28]  G. Sberveglieri,et al.  In2O3 nanowires for gas sensors : morphology and sensing characterisation , 2007 .

[29]  G. Sberveglieri,et al.  Preparation of copper oxide nanowire-based conductometric chemical sensors , 2013 .

[30]  M. Sitarz,et al.  Surface chemistry of SnO2 nanowires on Ag-catalyst-covered Si substrate studied using XPS and TDS methods , 2014, Nanoscale Research Letters.

[31]  Younan Xia,et al.  CuO Nanowires Can Be Synthesized by Heating Copper Substrates in Air , 2002 .

[32]  G. Sberveglieri,et al.  Nickel oxide nanowires: vapor liquid solid synthesis and integration into a gas sensing device , 2016, Nanotechnology.

[33]  Javier Piqueras,et al.  Optical and magnetic properties of CuO nanowires grown by thermal oxidation , 2010 .

[34]  K. Kolasinski Catalytic growth of nanowires: Vapor–liquid–solid, vapor–solid–solid, solution–liquid–solid and solid–liquid–solid growth , 2006 .

[35]  Simone Meinardi,et al.  Breath ethanol and acetone as indicators of serum glucose levels: an initial report. , 2005, Diabetes technology & therapeutics.

[36]  Optical sensing of NO2 in tin oxide nanowires at sub-ppm level , 2008 .

[37]  E. Gobbi,et al.  Metal oxide nanoscience and nanotechnology for chemical sensors , 2013 .

[38]  Fang Qian,et al.  Nanowire electronic and optoelectronic devices , 2006 .

[39]  S. R. Chowdhury,et al.  Breath Acetone-Based Non-Invasive Detection of Blood Glucose Levels , 2015 .

[40]  Giorgio Sberveglieri,et al.  Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts , 2002 .

[41]  Meng Tao,et al.  LSDA+U study of cupric oxide : Electronic structure and native point defects , 2006 .

[42]  G. Sberveglieri,et al.  Plasma-induced enhancement of UV photoluminescence in ZnO nanowires , 2013 .

[43]  David Wexler,et al.  Chemical synthesis, characterisation and gas sensing performance of copper oxide nanoribbons , 2008 .

[44]  Jing Wang,et al.  Ga2O3 nanowires prepared by physical evaporation , 1999 .

[45]  Matteo Ferroni,et al.  Single crystal ZnO nanowires as optical and conductometric chemical sensor , 2007 .

[46]  Giorgio Sberveglieri,et al.  Luminescence response of ZnO nanowires to gas adsorption , 2009 .

[47]  M. Madou,et al.  Chemical Sensing With Solid State Devices , 1989 .

[48]  Zhiyong Fan,et al.  Quasi-one-dimensional metal oxide materials—Synthesis, properties and applications , 2006 .

[49]  Michel Labeau,et al.  CO and NO2 gas sensitivity of nanocrystalline tin dioxide thin films doped with Pd, Ru and Rh , 2002 .

[50]  Matteo Ferroni,et al.  Quasi-one dimensional metal oxide semiconductors: Preparation, characterization and application as chemical sensors , 2009 .

[51]  Giorgio Sberveglieri,et al.  Functionalised zinc oxide nanowire gas sensors: Enhanced NO2 gas sensor response by chemical modification of nanowire surfaces , 2012, Beilstein journal of nanotechnology.

[52]  R. S. Wagner,et al.  VAPOR‐LIQUID‐SOLID MECHANISM OF SINGLE CRYSTAL GROWTH , 1964 .

[53]  N. Bârsan,et al.  Conduction Model of Metal Oxide Gas Sensors , 2001 .

[54]  S. Shi,et al.  Formation of CuO nanowires on Cu foil , 2004 .

[55]  P. Maddalena,et al.  Recombination dynamics of deep defect states in zinc oxide nanowires , 2009, Nanotechnology.

[56]  De-jun Wang,et al.  pH-dependent assembly of tungsten oxide three-dimensional architectures and their application in photocatalysis. , 2014, ACS applied materials & interfaces.

[57]  E. Comini Metal oxide nano-crystals for gas sensing. , 2006, Analytica chimica acta.

[58]  Matteo Ferroni,et al.  Semiconducting tin oxide nanowires and thin films for Chemical Warfare Agents detection , 2009 .

[59]  L. Yuan The growth of one-dimensional oxide nanostructures by thermal oxidation of metals , 2014 .

[60]  Jun Zhang,et al.  Au-doped WO3-based sensor for NO2 detection at low operating temperature , 2008 .

[61]  H. Yang,et al.  Controllable Synthesis of Hexagonal WO3 Nanoplates for Efficient Visible-Light-Driven Photocatalytic Oxygen Production. , 2017, Chemistry, an Asian journal.

[62]  Bich Ha Nguyen,et al.  Promising applications of graphene and graphene-based nanostructures , 2016 .

[63]  Giorgio Sberveglieri,et al.  Tungsten oxide nanowires for chemical detection , 2015 .

[64]  Rajesh Kumar,et al.  Sonochemical Synthesis and Characterization of Nanometer-Size Transition Metal Oxides from Metal Acetates , 2000 .

[65]  E. I. Givargizov Fundamental aspects of VLS growth , 1975 .

[66]  Matteo Ferroni,et al.  Metal oxide nanowire chemical and biochemical sensors , 2013 .

[67]  T. Chen,et al.  Simultaneous Synthesis of WO3-x Quantum Dots and Bundle-Like Nanowires Using a One-Pot Template-Free Solvothermal Strategy and Their Versatile Applications. , 2017, Small.

[68]  W. K. Burton,et al.  The growth of crystals and the equilibrium structure of their surfaces , 1951, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[69]  G. Sberveglieri,et al.  Thermally oxidized zinc oxide nanowires for use as chemical sensors , 2013, Nanotechnology.

[70]  Charles M. Lieber,et al.  Semiconductor nanowires: A platform for nanoscience and nanotechnology , 2010, 2010 3rd International Nanoelectronics Conference (INEC).

[71]  P. Charpentier,et al.  Synthesis of metal oxide nanostructures by direct sol-gel chemistry in supercritical fluids. , 2012, Chemical reviews.

[72]  G. Sberveglieri,et al.  SiC Foams Decorated with SnO2 Nanostructures for Room Temperature Gas Sensing , 2014 .

[73]  N. Katsarakis,et al.  One-pot synthesis of WO3 structures at 95 °C using HCl , 2015, Journal of Sol-Gel Science and Technology.

[74]  F. Julien,et al.  High degree of polarization of the near-band-edge photoluminescence in ZnO nanowires , 2011, Nanoscale research letters.

[75]  Leonardo C. Campos,et al.  On the growth and electrical characterization of CuO nanowires by thermal oxidation , 2009 .

[76]  G. Sberveglieri,et al.  Indium oxide quasi-monodimensional low temperature gas sensor , 2006 .