A UNIFIED FRAMEWORK FOR ADAPTIVE BDDC ̊

Abstract. In this theoretical study, we explore how to automate the selection of weights and primal constraints in BDDC methods for general SPD problems. In particular, we address the three-dimensional case and non-diagonal weight matrices such as the deluxe scaling. We provide an overview of existing approaches, show connections between them, and present new theoretical results: A localization of the global BDDC estimate leads to a reliable condition number bound and to a local generalized eigenproblem on each glob, i.e., each subdomain face, edge, and possibly vertex. We discuss how the eigenvectors corresponding to the smallest eigenvalues can be turned into generalized primal constraints. These can be either treated as they are or (which is much simpler to implement) be enforced by (possibly stronger) classical primal constraints. We show that the second option is the better one. Furthermore, we discuss equivalent versions of the face and edge eigenproblem which match with previous works and show an optimality property of the deluxe scaling. Lastly, we give a localized algorithm which guarantees the definiteness of the matrix r S underlying the BDDC preconditioner under mild assumptions on the subdomain matrices.

[1]  D. Rixen,et al.  Simultaneous FETI and block FETI: Robust domain decomposition with multiple search directions , 2015 .

[2]  Olof B. Widlund,et al.  An adaptive choice of primal constrains for BDDC domain decomposition algorithms , 2016 .

[3]  Ulrich Langer,et al.  Dual-Primal Isogeometric Tearing and Interconnecting Solvers for large-scale systems of multipatch continuous Galerkin IgA equations , 2015, 1511.07183.

[4]  Maksymilian Dryja,et al.  Technical Tools for Boundary Layers and Applications to Heterogeneous Coefficients , 2011 .

[5]  Hyea Hyun Kim,et al.  A FETI-DP FORMULATION OF THREE DIMENSIONAL ELASTICITY PROBLEMS WITH MORTAR DISCRETIZATION , 2005 .

[6]  Tosio Kato Estimation of Iterated Matrices, with application to the von Neumann condition , 1960 .

[7]  Xuemin Tu Three-Level BDDC in Three Dimensions , 2007, SIAM J. Sci. Comput..

[8]  L. Nikolova,et al.  On ψ- interpolation spaces , 2009 .

[9]  Andrea Toselli,et al.  Domain decomposition methods : algorithms and theory , 2005 .

[10]  P. Oswald,et al.  Remarks on the Abstract Theory of Additive and Multiplicative Schwarz Algorithms , 1995 .

[11]  Frédéric Nataf,et al.  Spillane, N. and Dolean Maini, Victorita and Hauret, P. and Nataf, F. and Pechstein, C. and Scheichl, R. (2013) Abstract robust coarse spaces for systems of PDEs via generalized eigenproblems in the overlaps , 2018 .

[12]  Axel Klawonn,et al.  Toward Extremely Scalable Nonlinear Domain Decomposition Methods for Elliptic Partial Differential Equations , 2015, SIAM J. Sci. Comput..

[13]  Santiago Badia,et al.  Balancing Domain Decomposition by Constraints and Perturbation , 2016, SIAM J. Numer. Anal..

[14]  Stefano Zampini,et al.  Adaptive BDDC Deluxe Methods for H(curl) , 2017 .

[15]  Olof B. Widlund,et al.  Isogeometric BDDC Preconditioners with Deluxe Scaling , 2014, SIAM J. Sci. Comput..

[16]  Clemens Pechstein,et al.  Finite and Boundary Element Tearing and Interconnecting Solvers for Multiscale Problems , 2012, Lecture Notes in Computational Science and Engineering.

[17]  Jan Mandel,et al.  BDDC and FETI-DP under minimalist assumptions , 2007, Computing.

[18]  Xuemin Tu,et al.  A three-level BDDC algorithm for a saddle point problem , 2008, Numerische Mathematik.

[19]  Juan G. Calvo,et al.  A BDDC algorithm with deluxe scaling for H(curl) in two dimensions with irregular subdomains , 2015, Math. Comput..

[20]  Luca F. Pavarino,et al.  BDDC PRECONDITIONERS FOR ISOGEOMETRIC ANALYSIS , 2013 .

[21]  A. Klawonn,et al.  A COMPARISON OF ADAPTIVE COARSE SPACES FOR ITERATIVE SUBSTRUCTURING IN TWO DIMENSIONS∗ , 2015 .

[22]  Clemens Pechstein,et al.  On Iterative Substructuring Methods for Multiscale Problems , 2014 .

[23]  Axel Klawonn,et al.  A Parallel Implementation of Dual-Primal FETI Methods for Three-Dimensional Linear Elasticity Using a Transformation of Basis , 2006, SIAM J. Sci. Comput..

[24]  Juan Galvis,et al.  The analysis of a FETI-DP preconditioner for a full DG discretization of elliptic problems in two dimensions , 2015, Numerische Mathematik.

[25]  J. Mandel,et al.  Convergence of a substructuring method with Lagrange multipliers , 1994 .

[26]  Olof B. Widlund,et al.  Domain Decomposition Methods in Science and Engineering XXIII , 2017 .

[27]  Eric T. Chung,et al.  BDDC and FETI-DP preconditioners with adaptive coarse spaces for three-dimensional elliptic problems with oscillatory and high contrast coefficients , 2016, J. Comput. Phys..

[28]  Jöran Bergh,et al.  Interpolation Spaces: An Introduction , 2011 .

[29]  Robert Scheichl,et al.  Analysis of FETI methods for multiscale PDEs. Part II: interface variation , 2011, Numerische Mathematik.

[30]  Chang-Ock Lee,et al.  A FETI-DP Formulation for the Stokes Problem without Primal Pressure Components , 2010, SIAM J. Numer. Anal..

[31]  Duk-Soon Oh,et al.  BDDC Algorithms with deluxe scaling and adaptive selection of primal constraints for Raviart-Thomas vector fields , 2017, Math. Comput..

[32]  Frédéric Nataf,et al.  Analysis of a Two-level Schwarz Method with Coarse Spaces Based on Local Dirichlet-to-Neumann Maps , 2012, Comput. Methods Appl. Math..

[33]  Olaf Steinbach,et al.  Boundary Element Tearing and Interconnecting Methods , 2003, Computing.

[34]  Axel Klawonn,et al.  Dual-primal Iterative Substructuring for Almost Incompressible Elasticity , 2007 .

[35]  Xuemin Tu,et al.  Three‐level BDDC in two dimensions , 2007 .

[36]  Eric T. Chung,et al.  BDDC and FETI-DP Methods with Enriched Coarse Spaces for Elliptic Problems with Oscillatory and High Contrast Coefficients , 2017 .

[37]  Christoph Lehrenfeld,et al.  Domain Decomposition Preconditioning for High Order Hybrid Discontinuous Galerkin Methods on Tetrahedral Meshes , 2013 .

[38]  Duk-Soon Oh,et al.  A BDDC Algorithm for Raviart-Thomas Vector Fields. , 2013 .

[39]  Eric T. Chung,et al.  A BDDC Algorithm with Enriched Coarse Spaces for Two-Dimensional Elliptic Problems with Oscillatory and High Contrast Coefficients , 2015, Multiscale Model. Simul..

[40]  Daniel B. Szyld,et al.  The many proofs of an identity on the norm of oblique projections , 2006, Numerical Algorithms.

[41]  Patrick R. Amestoy,et al.  Multifrontal parallel distributed symmetric and unsymmetric solvers , 2000 .

[42]  C. Pechstein,et al.  BETI-DP Methods in Unbounded Domains , 2008 .

[43]  J. Cros,et al.  A preconditioner for the Schur complement domain decomposition method , 2003 .

[44]  Claudio Canuto,et al.  BDDC preconditioners for continuous and discontinuous Galerkin methods using spectral/hp elements with variable local polynomial degree , 2014 .

[45]  Olof B. Widlund,et al.  Domain Decomposition for Less Regular Subdomains: Overlapping Schwarz in Two Dimensions , 2008, SIAM J. Numer. Anal..

[46]  P. Vassilevski Multilevel Block Factorization Preconditioners: Matrix-based Analysis and Algorithms for Solving Finite Element Equations , 2008 .

[47]  Olof B. Widlund,et al.  BDDC Algorithms for Incompressible Stokes Equations , 2006, SIAM J. Numer. Anal..

[48]  O. Widlund,et al.  FETI and Neumann--Neumann Iterative Substructuring Methods: Connections and New Results , 1999 .

[49]  Ulrich Langer,et al.  Dual-primal isogeometric tearing and interconnecting solvers for multipatch dG-IgA equations , 2016, 1601.01808.

[50]  U. Langer,et al.  Coupled Finite and Boundary Element Tearing and Interconnecting solvers for nonlinear potential problems , 2006 .

[51]  Susanne C. Brenner,et al.  BDDC and FETI-DP without matrices or vectors , 2007 .

[52]  Jianming Miao,et al.  General expressions for the Moore-Penrose inverse of a 2×2 block matrix , 1991 .

[53]  D. Rixen,et al.  FETI‐DP: a dual–primal unified FETI method—part I: A faster alternative to the two‐level FETI method , 2001 .

[54]  Bedrich Sousedík,et al.  Nested BDDC for a saddle-point problem , 2011, Numerische Mathematik.

[55]  Hua Xiang,et al.  A Coarse Space Construction Based on Local Dirichlet-to-Neumann Maps , 2011, SIAM J. Sci. Comput..

[56]  Marian Brezina,et al.  Balancing domain decomposition for problems with large jumps in coefficients , 1996, Math. Comput..

[57]  Axel Klawonn,et al.  Inexact FETI‐DP methods , 2007 .

[58]  Axel Klawonn,et al.  Towards Extremely Scalable Nonlinear Domain Decomposition Methods for Elliptic Partial Differential Equation , 2014 .

[60]  Axel Klawonn,et al.  On an Adaptive Coarse Space and on Nonlinear Domain Decomposition , 2014 .

[61]  Olof B. Widlund,et al.  A BDDC Algorithm with Deluxe Scaling for Three‐Dimensional H(curl) Problems , 2016 .

[62]  Olof B. Widlund,et al.  FETI‐DP, BDDC, and block Cholesky methods , 2006 .

[63]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[64]  Clark R. Dohrmann,et al.  Constraint and Weight Selection Algorithms for BDDC. , 2012 .

[65]  J. Mandel,et al.  An algebraic theory for primal and dual substructuring methods by constraints , 2005 .

[66]  Hyea Hyun Kim A BDDC Algorithm for Mortar Discretization of Elasticity Problems , 2008, SIAM J. Numer. Anal..

[67]  Jan Mandel,et al.  On Adaptive-Multilevel BDDC , 2010 .

[68]  O. Widlund,et al.  A FETI-DP Corner Selection Algorithm for three-dimensional problems , 2003 .

[69]  Axel Klawonn,et al.  Deflation, Projector Preconditioning, and Balancing in Iterative Substructuring Methods: Connections and New Results , 2012, SIAM J. Sci. Comput..

[70]  Olaf Schenk,et al.  Matching-based preprocessing algorithms to the solution of saddle-point problems in large-scale nonconvex interior-point optimization , 2007, Comput. Optim. Appl..

[71]  Jean-Yves L'Excellent,et al.  On Computing Inverse Entries of a Sparse Matrix in an Out-of-Core Environment , 2012, SIAM J. Sci. Comput..

[72]  Robert Scheichl,et al.  Analysis of FETI methods for multiscale PDEs , 2008, Numerische Mathematik.

[73]  Bert Jüttler,et al.  IETI – Isogeometric Tearing and Interconnecting , 2012, Computer methods in applied mechanics and engineering.

[74]  J. Mandel,et al.  An Iterative Method with Convergence Rate Chosen a priori , 1999 .

[75]  A. Klawonn,et al.  Robust FETI-DP methods for heterogeneous three dimensional elasticity problems , 2007 .

[76]  Axel Klawonn,et al.  Projector preconditioning and transformation of basis in FETI-DP algorithms for contact problems , 2012, Math. Comput. Simul..

[77]  Olaf Schenk,et al.  Fast Methods for Computing Selected Elements of the Green's Function in Massively Parallel Nanoelectronic Device Simulations , 2013, Euro-Par.

[78]  Svetozar Margenov,et al.  Auxiliary Space Multigrid Method Based on Additive Schur Complement Approximation for Graph Laplacian , 2017, 1708.05738.

[79]  W. Marsden I and J , 2012 .

[80]  Olof B. Widlund,et al.  Dual‐primal FETI methods for linear elasticity , 2006 .

[81]  Olof B. Widlund,et al.  DUAL-PRIMAL FETI METHODS FOR THREE-DIMENSIONAL ELLIPTIC PROBLEMS WITH HETEROGENEOUS COEFFICIENTS , 2022 .

[82]  Marcus Sarkis,et al.  Two-level Schwartz methods for nonconforming finite elements and discontinuous coefficients , 1993 .

[83]  Axel Klawonn,et al.  FETI‐DP with different scalings for adaptive coarse spaces , 2014 .

[84]  Tarek P. Mathew,et al.  Domain Decomposition Methods for the Numerical Solution of Partial Differential Equations , 2008, Lecture Notes in Computational Science and Engineering.

[85]  Olof B. Widlund,et al.  Adaptive Selection of Primal Constraints for Isogeometric BDDC Deluxe Preconditioners , 2017, SIAM J. Sci. Comput..

[86]  T. Andô Concavity of certain maps on positive definite matrices and applications to Hadamard products , 1979 .

[87]  J. Mandel,et al.  Adaptive selection of face coarse degrees of freedom in the BDDC and the FETI-DP iterative substructuring methods , 2007 .

[88]  Marcus Sarkis,et al.  New Theoretical Coefficient Robustness Results for FETI-DP , 2013, Domain Decomposition Methods in Science and Engineering XX.

[89]  Luca F. Pavarino,et al.  BDDC and FETI-DP preconditioners for spectral element discretizations , 2007 .

[90]  CLARK R. DOHRMANN,et al.  A Preconditioner for Substructuring Based on Constrained Energy Minimization , 2003, SIAM J. Sci. Comput..

[91]  Clark R. Dohrmann,et al.  Convergence of a balancing domain decomposition by constraints and energy minimization , 2002, Numer. Linear Algebra Appl..

[92]  Olof B. Widlund,et al.  Some Recent Tools and a BDDC Algorithm for 3D Problems in H(curl) , 2013, Domain Decomposition Methods in Science and Engineering XX.

[93]  S. Nepomnyaschikh Mesh theorems on traces, normalizations of function traces and their inversion , 1991 .

[94]  Axel Klawonn,et al.  Adaptive Coarse Spaces for FETI-DP in Three Dimensions , 2016, SIAM J. Sci. Comput..

[95]  Petter E. Bjørstad,et al.  Domain Decomposition Solvers for Large Scale Industrial Finite Element Problems , 2000, PARA.

[96]  Oliver Rheinbach,et al.  Parallel scalable iterative substructuring: Robust exact and inexact FETI-DP methods with applications to elasticity , 2007 .

[97]  Panayot S. Vassilevski,et al.  Spectral AMGe (ρAMGe) , 2003, SIAM J. Sci. Comput..

[98]  Yalchin Efendiev,et al.  Domain Decomposition Preconditioners for Multiscale Flows in High Contrast Media: Reduced Dimension Coarse Spaces , 2010, Multiscale Model. Simul..

[99]  Jong Ho Lee,et al.  A Balancing Domain Decomposition by Constraints Deluxe Method for Reissner-Mindlin Plates with Falk-Tu Elements , 2015, SIAM J. Numer. Anal..

[100]  Manolis Papadrakakis,et al.  The mosaic of high performance domain Decomposition Methods for Structural Mechanics: Formulation, interrelation and numerical efficiency of primal and dual methods , 2003 .

[101]  Daniel Rixen,et al.  Automatic spectral coarse spaces for robust FETI and BDD algorithms , 2012 .

[102]  Eric T. Chung,et al.  A deluxe FETI‐DP algorithm for a hybrid staggered discontinuous Galerkin method for H(curl)‐elliptic problems , 2014 .

[103]  Z. Dostál,et al.  Total FETI—an easier implementable variant of the FETI method for numerical solution of elliptic PDE , 2006 .

[104]  Clark R. Dohrmann,et al.  Multispace and multilevel BDDC , 2007, Computing.

[105]  Jan Mandel,et al.  Adaptive BDDC in three dimensions , 2009, Math. Comput. Simul..

[106]  Joerg Willems Robust multilevel solvers for high-contrast anisotropic multiscale problems , 2013, J. Comput. Appl. Math..

[107]  N. S. Barnett,et al.  Private communication , 1969 .

[108]  Jan Mandel,et al.  Adaptive-Multilevel BDDC and its parallel implementation , 2013, Computing.

[109]  Juan Galvis,et al.  BDDC methods for discontinuous Galerkin discretization of elliptic problems , 2007, J. Complex..

[110]  W. Anderson,et al.  SHORTED OPERATORS. II , 1975 .

[111]  R. Lazarov,et al.  Robust Domain Decomposition Preconditioners for Abstract Symmetric Positive Definite Bilinear Forms , 2011, 1105.1131.

[112]  Olof B. Widlund,et al.  BDDC Preconditioners for Spectral Element Discretizations of Almost Incompressible Elasticity in Three Dimensions , 2010, SIAM J. Sci. Comput..

[113]  Olof B. Widlund,et al.  An Analysis of a FETI-DP Algorithm on Irregular Subdomains in the Plane , 2008, SIAM J. Numer. Anal..

[114]  W. McLean Strongly Elliptic Systems and Boundary Integral Equations , 2000 .

[115]  Bedrich Sousedík,et al.  BDDC for mixed-hybrid formulation of flow in porous media with combined mesh dimensions , 2015, Numer. Linear Algebra Appl..

[116]  Yongge Tian How to Express a Parallel Sum of k Matrices , 2002 .

[117]  Axel Klawonn,et al.  FETI-DP Methods with an Adaptive Coarse Space , 2015, SIAM J. Numer. Anal..

[118]  Pavel Burda,et al.  Face-based selection of corners in 3D substructuring , 2009, Math. Comput. Simul..

[119]  Jan Mandel,et al.  On the convergence of a dual-primal substructuring method , 2000, Numerische Mathematik.

[120]  R. Duffin,et al.  Series and parallel addition of matrices , 1969 .