An investigation of plasma chemistry for dc plasma enhanced chemical vapour deposition of carbon nanotubes and nanofibres

The role of plasma in plasma enhanced chemical vapour deposition of carbon nanotubes and nanofibres is investigated with both experimental and computational diagnostic techniques. A residual gas analysis (RGA) of a 12 mbar dc discharge with a C2H2/NH3 gas mixture is conducted near the Ni catalyst surface employed for carbon nanofibre growth. The results are corroborated with a 1D dc discharge model that solves for species densities, ion momentum, and ion, electron and neutral gas thermal energies. The effect of varying the plasma power from 0 to 200 W on the gas composition is studied. The dissociation efficiency of the plasma is demonstrated where over 50% of the feedstock is converted to a mixture of hydrogen, nitrogen and hydrogen cyanide at 200 W. Finally, the important role that endothermic ion–molecule reactions play in this conversion is, for the first time, established. Of these reactions, dissociative proton abstraction and collision-induced dissociation are of the greatest significance.

[1]  Yuehe Lin,et al.  Glucose Biosensors Based on Carbon Nanotube Nanoelectrode Ensembles , 2004 .

[2]  A. Phelps Cross Sections and Swarm Coefficients for H+, H2+, H3+, H, H2, and H− in H2 for Energies from 0.1 eV to 10 keV , 1990 .

[3]  W. M. Haynes CRC Handbook of Chemistry and Physics , 1990 .

[4]  Synthesis of aligned carbon nanotubes by DC plasma-enhanced hot filament CVD , 2003 .

[5]  J. H. Whealton,et al.  Controlled alignment of carbon nanofibers in a large-scale synthesis process , 2002 .

[6]  M. L. Simpson,et al.  Initial lithography results from the digital electrostatic e-beam array lithography concept , 2004 .

[7]  R. Kalish,et al.  Growth of aligned carbon nanotubes by biasing during growth , 2001 .

[8]  Jing Kong,et al.  Electric-field-directed growth of aligned single-walled carbon nanotubes , 2001 .

[9]  Gehan A. J. Amaratunga,et al.  Plasma composition during plasma-enhanced chemical vapor deposition of carbon nanotubes , 2004 .

[10]  Gehan A. J. Amaratunga,et al.  The Significance of Plasma Heating in Carbon Nanotube and Nanofiber Growth , 2004 .

[11]  Gareth H. McKinley,et al.  Superhydrophobic Carbon Nanotube Forests , 2003 .

[12]  M. Meyyappan,et al.  Growth of carbon nanotubes by thermal and plasma chemical vapour deposition processes and applications in microscopy , 2002 .

[13]  M. Meyyappan,et al.  Carbon Nanotube Nanoelectrode Array for Ultrasensitive DNA Detection , 2003 .

[14]  V. Anicich Evaluated Bimolecular Ion‐Molecule Gas Phase Kinetics of Positive Ions for Use in Modeling Planetary Atmospheres, Cometary Comae, and Interstellar Clouds , 1993 .

[15]  L. Baylor,et al.  Growth of vertically aligned carbon nanofibers by low-pressure inductively coupled plasma-enhanced chemical vapor deposition , 2003 .

[16]  T. Cravens,et al.  A model of the ionosphere of Titan , 1992 .

[17]  J. H. Whealton,et al.  Digital electrostatic electron-beam array lithography , 2002 .

[18]  Field emission characteristics of multiwalled carbon nanotubes grown at low temperatures using electron cyclotron resonance chemical vapor deposition , 2003 .

[19]  Takamichi Hirata,et al.  Single-walled carbon nanotubes produced by plasma-enhanced chemical vapor deposition , 2003 .

[20]  I. Han,et al.  In situ diagnosis of chemical species for the growth of carbon nanotubes in microwave plasma-enhanced chemical vapor deposition , 2002 .

[21]  R. C. Weast CRC Handbook of Chemistry and Physics , 1973 .

[22]  J. olthoff,et al.  Measured cross sections and ion energies for a CHF3 discharge , 2002 .

[23]  G. Amaratunga,et al.  Fabrication and electrical characteristics of carbon nanotube-based microcathodes for use in a parallel electron-beam lithography system , 2003 .

[24]  F. Turco,et al.  Gas-phase ion chemistry of the propyne/ammonia and silane/propyne/ammonia systems , 2004 .

[25]  Qiaoqin Yang,et al.  Growth mechanism and orientation control of well-aligned carbon nanotubes , 2003 .

[26]  John Robertson,et al.  Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition , 2001 .

[27]  Mi Chen,et al.  Growth of carbon nanotubes by microwave plasma chemical vapor deposition using CH4 and CO2 gas mixture , 2002 .

[28]  S. Tsai,et al.  Bias-enhanced nucleation and growth of the aligned carbon nanotubes with open ends under microwave plasma synthesis , 1999 .

[29]  D. Hash,et al.  Residual gas analysis of a dc plasma for carbon nanofiber growth , 2004 .

[30]  Otto Zhou,et al.  Plasma-induced alignment of carbon nanotubes , 2000 .

[31]  M. Meyyappan,et al.  Growth of multiwall carbon nanotubes in an inductively coupled plasma reactor , 2002 .

[32]  J. O’Hanlon A User's Guide to Vacuum Technology , 1980 .

[33]  Charles M. Lieber,et al.  Vectorial Growth of Metallic and Semiconducting Single-Wall Carbon Nanotubes , 2002 .

[34]  D. Hensley,et al.  Microarrays of Biomimetic Cells Formed by the Controlled Synthesis of Carbon Nanofiber Membranes , 2004 .

[35]  M. Meyyappan,et al.  Large-Scale Fabrication of Carbon Nanotube Probe Tips for Atomic Force Microscopy Critical Dimension Imaging Applications , 2004 .

[36]  M. Meyyappan,et al.  Reactor design considerations in the hot filament/direct current plasma synthesis of carbon nanofibers , 2003 .

[37]  Comparisons on properties and growth mechanisms of carbon nanotubes fabricated by high-pressure and low-pressure plasma-enhanced chemical vapor deposition , 2004 .

[38]  B. L. Peko,et al.  Collision induced dissociation, proton abstraction, and charge transfer for low energy collisions involving CH4+ , 1998 .

[39]  Michael L. Simpson,et al.  Microarrays of vertically-aligned carbon nanofiber electrodes in an open fluidic channel , 2004 .

[40]  Gehan A. J. Amaratunga,et al.  Fabrication and electrical characteristics of carbon nanotube field emission microcathodes with an integrated gate electrode , 2002 .

[41]  M. Meyyappan,et al.  Ultrasensitive label-free DNA analysis using an electronic chip based on carbon nanotube nanoelectrode arrays , 2003, Nanotechnology.

[42]  L. Operti,et al.  Gas-phase ion chemistry in GeH4/C2H4/XH3 (X = P, N) systems , 2003 .

[43]  M. Guillorn,et al.  Controlled transport of latex beads through vertically aligned carbon nanofiber membranes , 2002 .

[44]  T. Miyake,et al.  Synthesis of Aligned Carbon Nanofibers at 200°C , 2003 .

[45]  Ronald K. Hanson,et al.  A SHOCK TUBE STUDY OF REACTIONS OF C ATOMS AND CH WITH NO INCLUDING PRODUCT CHANNEL MEASUREMENTS , 1991 .

[46]  S. Krishnan,et al.  Electron transport through metal-multiwall carbon nanotube interfaces , 2004, IEEE Transactions on Nanotechnology.

[47]  M. Meyyappan,et al.  Integrating Carbon Nanotubes For Atomic Force Microscopy Imaging Applications , 2004 .

[48]  M. Siegal,et al.  Synthesis of large arrays of well-aligned carbon nanotubes on glass , 1998, Science.

[49]  Ant Ural,et al.  Electric-field-aligned growth of single-walled carbon nanotubes on surfaces , 2002 .

[50]  V. Anicich,et al.  Ion-molecule chemistry in Titan's ionosphere , 1997 .

[51]  L. Baylor,et al.  Microfabricated field emission devices using carbon nanofibers as cathode elements , 2001 .

[52]  M. Hon,et al.  Sheath-dependent orientation control of carbon nanofibres and carbon nanotubes during plasma-enhanced chemical vapour deposition , 2003 .

[53]  T. Hirao,et al.  Structural characterization of randomly and vertically oriented carbon nanotube films grown by chemical vapour deposition , 2003 .

[54]  C. Daraio,et al.  Multiple Sharp Bendings of Carbon Nanotubes during Growth to Produce Zigzag Morphology , 2004 .

[55]  Michael L. Simpson,et al.  Tracking Gene Expression after DNA Delivery Using Spatially Indexed Nanofiber Arrays , 2004 .

[56]  Gehan A. J. Amaratunga,et al.  Uniform patterned growth of carbon nanotubes without surface carbon , 2001 .

[57]  Mitchel J. Doktycz,et al.  Intracellular integration of synthetic nanostructures with viable cells for controlled biochemical manipulation , 2003 .

[58]  Chih-Ming Hsu,et al.  Growth of the large area horizontally-aligned carbon nanotubes by ECR-CVD , 2002 .

[59]  Takamichi Hirata,et al.  Structure control of carbon nanotubes using radio-frequency plasma enhanced chemical vapor deposition , 2004 .

[60]  L. Delzeit,et al.  DIRECTED GROWTH OF SINGLE-WALLED CARBON NANOTUBES , 2002 .

[61]  Gehan A. J. Amaratunga,et al.  Self-Aligned, Gated Arrays of Individual Nanotube and Nanowire Emitters , 2004 .

[62]  N. A. Azarenkov,et al.  Inductively coupled Ar/CH₄/H₂plasmas for low-temperature deposition of ordered carbon nanostructures , 2004 .

[63]  M. Meyyappan,et al.  Bottom-up approach for carbon nanotube interconnects , 2003 .

[64]  H. Dai,et al.  Preferential Growth of Semiconducting Single-Walled Carbon Nanotubes by a Plasma Enhanced CVD Method , 2004 .

[65]  M. L. Simpson,et al.  Individually addressable vertically aligned carbon nanofiber-based electrochemical probes , 2002 .

[66]  T. Hirao,et al.  Low Temperature Synthesis of Aligned Carbon Nanotubes by Inductively Coupled Plasma Chemical Vapor Deposition Using Pure Methane , 2003 .