The uptake characteristics of Prussian-blue nanoparticles for rare metal ions for recycling of precious metals from nuclear and electronic wastes

[1]  H. Masuda,et al.  The uptake mechanism of palladium ions into Prussian-blue nanoparticles in a nitric acid solution toward application for the recycling of precious metals from electronic and nuclear wastes , 2021, RSC advances.

[2]  Shinta Watanabe,et al.  Chemical forms of rhodium ion in pure water and nitric acid solution studied using ultraviolet-visible spectroscopy and first-principles calculations , 2020, IOP Conference Series: Materials Science and Engineering.

[3]  T. Matsumura,et al.  Sorption Properties of Aluminum Hexacyanoferrate for Platinum Group Elements , 2020 .

[4]  P. Mohapatra,et al.  Understanding the recovery of Ruthenium from acidic feeds by oxidative solvent extraction studies , 2019, Radiochimica Acta.

[5]  M. Nakaya,et al.  Chemical forms of molybdenum ion in nitric acid solution studied using liquid-phase X-ray absorption fine structure, Ultraviolet–Visible absorption spectroscopy and first-principles calculations , 2019, Chemical Physics Letters.

[6]  M. Kurihara,et al.  Redox-coupled alkali-metal ion transport mechanism in binder-free films of Prussian blue nanoparticles , 2019, Journal of Materials Chemistry A.

[7]  M. Yoshino,et al.  Spectroscopic and first-principles calculation studies of the chemical forms of palladium ion in nitric acid solution for development of disposal of high-level radioactive nuclear wastes , 2018 .

[8]  S. Koyama,et al.  Adsorption of platinum-group metals and molybdenum onto aluminum ferrocyanide in spent fuel solution , 2017 .

[9]  Stefano de Gironcoli,et al.  Advanced capabilities for materials modelling with Quantum ESPRESSO , 2017, Journal of physics. Condensed matter : an Institute of Physics journal.

[10]  H. Tachikawa,et al.  Mechanism of K+, Cs+ ion exchange in nickel ferrocyanide: A density functional theory study , 2017 .

[11]  M. Dresselhaus,et al.  Cellulose nanofiber backboned Prussian blue nanoparticles as powerful adsorbents for the selective elimination of radioactive cesium , 2016, Scientific Reports.

[12]  Jiangfeng Qian,et al.  Low Defect FeFe(CN)6 Framework as Stable Host Material for High Performance Li-Ion Batteries. , 2016, ACS applied materials & interfaces.

[13]  T. Ohnuki,et al.  Direct accumulation pathway of radioactive cesium to fruit-bodies of edible mushroom from contaminated wood logs , 2016, Scientific Reports.

[14]  Saratchandra Babu Mukkamala,et al.  A review on contemporary Metal–Organic Framework materials , 2016 .

[15]  Yu Zhang,et al.  Prussian Blue Nanoparticles as Multienzyme Mimetics and Reactive Oxygen Species Scavengers. , 2016, Journal of the American Chemical Society.

[16]  Donghui Yang,et al.  Flexible Metal–Organic Frameworks: Recent Advances and Potential Applications , 2015, Advanced materials.

[17]  S. Ohkoshi,et al.  Multifunctional Material: Bistable Metal—Cyanide Polymer of Rubidium Manganese Hexacyanoferrate , 2015 .

[18]  S. Ohkoshi,et al.  Multifunctional Material: Bistable Metal-Cyanide Polymer of Rubidium Manganese Hexacyanoferrate , 2015 .

[19]  M. Kurihara,et al.  Cesium adsorption ability and stability of metal hexacyanoferrates irradiated with gamma rays , 2015, Journal of Radioanalytical and Nuclear Chemistry.

[20]  A. Clark,et al.  Integrated computational and experimental protocol for understanding Rh(III) speciation in hydrochloric and nitric acid solutions. , 2014, Inorganic chemistry.

[21]  Hisashi Aoki,et al.  Geological storage of nuclear wastes: Insights following the Fukushima crisis , 2014 .

[22]  Arash A. Mostofi,et al.  An updated version of wannier90: A tool for obtaining maximally-localised Wannier functions , 2014, Comput. Phys. Commun..

[23]  S. Masuda,et al.  Building technical and social confidence in the safety of geological disposal in Japan , 2013 .

[24]  Chick C. Wilson,et al.  Spin crossover in the CsFe II [Cr III (CN) 6 ] Prussian blue analog: Phonons and thermodynamics from hybrid functionals , 2010 .

[25]  Y. Einaga,et al.  Photoreduction of Prussian Blue intercalated into titania nanosheet ultrathin films. , 2009, Journal of the American Chemical Society.

[26]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[27]  F. Illas,et al.  On the prediction of the crystal and electronic structure of mixed-valence materials by periodic density functional calculations: the case of Prussian Blue. , 2008, The Journal of chemical physics.

[28]  M. Tokumoto,et al.  Simple synthesis of three primary colour nanoparticle inks of Prussian blue and its analogues , 2007 .

[29]  Kayo Sawada,et al.  Removal of Platinum Group Metals Contained in Molten Glass Using Copper , 2007 .

[30]  Gerbrand Ceder,et al.  Oxidation energies of transition metal oxides within the GGA+U framework , 2006 .

[31]  M. Aritomi,et al.  Long-Term Integrity of Waste Package Final Closure for HLW Geological Disposal, (I) , 2005 .

[32]  Matt Probert,et al.  First principles methods using CASTEP , 2005 .

[33]  Stefano de Gironcoli,et al.  Linear response approach to the calculation of the effective interaction parameters in the LDA + U method , 2004, cond-mat/0405160.

[34]  Susumu Kitagawa,et al.  Functional porous coordination polymers. , 2004, Angewandte Chemie.

[35]  Peter H. Stauffer,et al.  Rare earth elements: critical resources for high technology , 2002 .

[36]  Y. Koyama,et al.  Relativistic cluster calculation of ligand-field multiplet effects on cation L-2,L-3 x-ray-absorption edges of SrTiO3, NiO, and CaF2 , 2001 .

[37]  R. Harjula,et al.  Selective removal of cesium from simulated high-level liquid wastes by insoluble ferrocyanides , 1997 .

[38]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[39]  Hajime Miyashiro,et al.  Development of Partitioning and Transmutation Technology for Long-Lived Nuclides , 1991 .

[40]  D. Vanderbilt,et al.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.

[41]  Peter Fischer,et al.  Neutron diffraction study of Prussian Blue, Fe4[Fe(CN)6]3.xH2O. Location of water molecules and long-range magnetic order , 1980 .

[42]  D. Schwarzenbach,et al.  THE CRYSTAL STRUCTURE OF PRUSSIAN BLUE- FE4(FE(CN)6)3.XH2O , 1978 .

[43]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[44]  D. Schwarzenbach,et al.  Single-crystal study of Prussian Blue: Fe4[Fe(CN)6]2, 14H2O , 1972 .

[45]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[46]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[47]  P. Scherrer,et al.  Bestimmung der Größe und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen , 1918 .