Analysis of the Deflated Conjugate Gradient Method Based on Symmetric Multigrid Theory

Deflation techniques for Krylov subspace methods and in particular the conjugate gradient method have seen a lot of attention in recent years. They provide means to improve the convergence speed of the methods in a rather straight forward way by enriching the Krylov subspace with a deflation subspace. The most common approach for the construction of deflation subspaces is to use (approximate) eigenvectors. However, there are many situations where a more general deflation subspace is advisable. We derive an estimate for the speed of convergence of the deflated conjugate gradient method using theory originally developed for algebraic multigrid methods. Our result holds for general deflation subspaces and is based on the weak approximation property---known from multigrid methods---and a measure of the A invariance of the subspace by the strengthened Cauchy-Schwarz inequality. In addition the result suggests that the techniques developed to construct efficient interpolation operators in algebraic multigrid methods can also be applied to improve deflation subspaces.

[1]  Ji-guang Sun Perturbation bounds for the Cholesky andQR factorizations , 1991 .

[2]  Gerard L. G. Sleijpen,et al.  Inexact Krylov Subspace Methods for Linear Systems , 2004, SIAM J. Matrix Anal. Appl..

[3]  D FalgoutRobert An Introduction to Algebraic Multigrid , 2006 .

[4]  H. V. D. Vorst,et al.  The rate of convergence of Conjugate Gradients , 1986 .

[5]  A. Brandt Algebraic multigrid theory: The symmetric case , 1986 .

[6]  Cornelis Vuik,et al.  On the Construction of Deflation-Based Preconditioners , 2001, SIAM J. Sci. Comput..

[7]  E. F. Kaasschieter,et al.  Preconditioned conjugate gradients for solving singular systems , 1988 .

[8]  Cornelis Vuik,et al.  Comparison of Two-Level Preconditioners Derived from Deflation, Domain Decomposition and Multigrid Methods , 2009, J. Sci. Comput..

[9]  Andreas Stathopoulos,et al.  Computing and Deflating Eigenvalues While Solving Multiple Right-Hand Side Linear Systems with an Application to Quantum Chromodynamics , 2007, SIAM J. Sci. Comput..

[10]  M. Luscher Local coherence and deflation of the low quark modes in lattice QCD , 2007, 0706.2298.

[11]  Merico E. Argentati,et al.  Principal Angles between Subspaces in an A-Based Scalar Product: Algorithms and Perturbation Estimates , 2001, SIAM J. Sci. Comput..

[12]  Ludmil T. Zikatanov,et al.  On two‐grid convergence estimates , 2005, Numer. Linear Algebra Appl..

[13]  Z. Dostál Conjugate gradient method with preconditioning by projector , 1988 .

[14]  Jörg Liesen,et al.  A Framework for Deflated and Augmented Krylov Subspace Methods , 2012, SIAM J. Matrix Anal. Appl..

[15]  T. Manteuffel,et al.  Adaptive Smoothed Aggregation ( α SA ) Multigrid ∗ , 2005 .

[16]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[17]  William L. Briggs,et al.  A multigrid tutorial , 1987 .

[18]  I. Gustafsson,et al.  Preconditioning and two-level multigrid methods of arbitrary degree of approximation , 1983 .

[19]  Valeria Simoncini,et al.  Theory of Inexact Krylov Subspace Methods and Applications to Scientific Computing , 2003, SIAM J. Sci. Comput..

[20]  Frédéric Guyomarc'h,et al.  A Deflated Version of the Conjugate Gradient Algorithm , 1999, SIAM J. Sci. Comput..

[21]  Cornelis Vuik,et al.  A Comparison of Two-Level Preconditioners Based on Multigrid and Deflation , 2010, SIAM J. Matrix Anal. Appl..

[22]  J. H. Wilkinson The algebraic eigenvalue problem , 1966 .

[23]  Thomas A. Manteuffel,et al.  Algebraic Multigrid Based on Element Interpolation (AMGe) , 2000, SIAM J. Sci. Comput..

[24]  Victor Eijkhout,et al.  The Role of the Strengthened Cauchy-Buniakowskii-Schwarz Inequality in Multilevel Methods , 1991, SIAM Rev..

[25]  R. Nicolaides Deflation of conjugate gradients with applications to boundary value problems , 1987 .

[26]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .