Analysis of the Deflated Conjugate Gradient Method Based on Symmetric Multigrid Theory
暂无分享,去创建一个
[1] Ji-guang Sun. Perturbation bounds for the Cholesky andQR factorizations , 1991 .
[2] Gerard L. G. Sleijpen,et al. Inexact Krylov Subspace Methods for Linear Systems , 2004, SIAM J. Matrix Anal. Appl..
[3] D FalgoutRobert. An Introduction to Algebraic Multigrid , 2006 .
[4] H. V. D. Vorst,et al. The rate of convergence of Conjugate Gradients , 1986 .
[5] A. Brandt. Algebraic multigrid theory: The symmetric case , 1986 .
[6] Cornelis Vuik,et al. On the Construction of Deflation-Based Preconditioners , 2001, SIAM J. Sci. Comput..
[7] E. F. Kaasschieter,et al. Preconditioned conjugate gradients for solving singular systems , 1988 .
[8] Cornelis Vuik,et al. Comparison of Two-Level Preconditioners Derived from Deflation, Domain Decomposition and Multigrid Methods , 2009, J. Sci. Comput..
[9] Andreas Stathopoulos,et al. Computing and Deflating Eigenvalues While Solving Multiple Right-Hand Side Linear Systems with an Application to Quantum Chromodynamics , 2007, SIAM J. Sci. Comput..
[10] M. Luscher. Local coherence and deflation of the low quark modes in lattice QCD , 2007, 0706.2298.
[11] Merico E. Argentati,et al. Principal Angles between Subspaces in an A-Based Scalar Product: Algorithms and Perturbation Estimates , 2001, SIAM J. Sci. Comput..
[12] Ludmil T. Zikatanov,et al. On two‐grid convergence estimates , 2005, Numer. Linear Algebra Appl..
[13] Z. Dostál. Conjugate gradient method with preconditioning by projector , 1988 .
[14] Jörg Liesen,et al. A Framework for Deflated and Augmented Krylov Subspace Methods , 2012, SIAM J. Matrix Anal. Appl..
[15] T. Manteuffel,et al. Adaptive Smoothed Aggregation ( α SA ) Multigrid ∗ , 2005 .
[16] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[17] William L. Briggs,et al. A multigrid tutorial , 1987 .
[18] I. Gustafsson,et al. Preconditioning and two-level multigrid methods of arbitrary degree of approximation , 1983 .
[19] Valeria Simoncini,et al. Theory of Inexact Krylov Subspace Methods and Applications to Scientific Computing , 2003, SIAM J. Sci. Comput..
[20] Frédéric Guyomarc'h,et al. A Deflated Version of the Conjugate Gradient Algorithm , 1999, SIAM J. Sci. Comput..
[21] Cornelis Vuik,et al. A Comparison of Two-Level Preconditioners Based on Multigrid and Deflation , 2010, SIAM J. Matrix Anal. Appl..
[22] J. H. Wilkinson. The algebraic eigenvalue problem , 1966 .
[23] Thomas A. Manteuffel,et al. Algebraic Multigrid Based on Element Interpolation (AMGe) , 2000, SIAM J. Sci. Comput..
[24] Victor Eijkhout,et al. The Role of the Strengthened Cauchy-Buniakowskii-Schwarz Inequality in Multilevel Methods , 1991, SIAM Rev..
[25] R. Nicolaides. Deflation of conjugate gradients with applications to boundary value problems , 1987 .
[26] M. Hestenes,et al. Methods of conjugate gradients for solving linear systems , 1952 .