Convergence of forelimb and hindlimb Natural Pendular Period in baboons (Papio cynocephalus) and its implication for the evolution of primate quadrupedalism.

[1]  M. Cartmill,et al.  New views on primate origins , 2005 .

[2]  D. Schmitt Substrate Size and Primate Forelimb Mechanics: Implications for Understanding the Evolution of Primate Locomotion , 2003, International Journal of Primatology.

[3]  Karen L Steudel-Numbers,et al.  The energetic cost of locomotion: humans and primates compared to generalized endotherms. , 2003, Journal of human evolution.

[4]  Daniel Schmitt,et al.  Limb excursion during quadrupedal walking: how do primates compare to other mammals? , 2001 .

[5]  J. Bussmann,et al.  Comparing predictive validity of four ballistic swing phase models of human walking. , 2001, Journal of biomechanics.

[6]  M. Hamrick Primate origins: evolutionary change in digital ray patterning and segmentation. , 2001, Journal of human evolution.

[7]  J. Hamill,et al.  The swing phase of human walking is not a passive movement. , 2000, Motor control.

[8]  S. Larson,et al.  Uniqueness of primate forelimb posture during quadrupedal locomotion. , 2000, American journal of physical anthropology.

[9]  P. E. Martin,et al.  Walking symmetry and energy cost in persons with unilateral transtibial amputations: matching prosthetic and intact limb inertial properties. , 2000, Archives of physical medicine and rehabilitation.

[10]  J. A. Brush,et al.  Phalangeal morphology of the paromomyidae (?primates, plesiadapiformes): the evidence for gliding behavior reconsidered. , 1999, American journal of physical anthropology.

[11]  P. Lemelin Morphological correlates of substrate use in didelphid marsupials: implications for primate origins , 1999 .

[12]  M. J. Myers,et al.  Morphological conservation of limb natural pendular period in the domestic dog (Canis familiaris): Implications for locomotor energetics , 1997, Journal of morphology.

[13]  A. Hof Scaling gait data to body size , 1996 .

[14]  Y. Li,et al.  Segment inertial properties of primates: new techniques for laboratory and field studies of locomotion. , 1996, American journal of physical anthropology.

[15]  S. Larson,et al.  Shoulder motion during quadrupedal walking in Cercopithecus aethiops: Integration of cineradiographic and electromyographic data , 1994 .

[16]  S. Larson,et al.  Serratus ventralis function in vervet monkeys (Cercopithecus aethiops): are primate quadrupeds unique? , 1994 .

[17]  K Steudel,et al.  The work and energetic cost of locomotion. I. The effects of limb mass distribution in quadrupeds. , 1990, The Journal of experimental biology.

[18]  J. Vilensky,et al.  Effects of speed on forelimb joint angular displacement patterns in vervet monkeys (Cercopithecus aethiops). , 1990, American journal of physical anthropology.

[19]  J. Vilensky,et al.  Effects of growth and speed on hindlimb joint angular displacement patterns in vervet monkeys (Cercopithecus aethiops). , 1990, American journal of physical anthropology.

[20]  J. Hamill,et al.  The force-driven harmonic oscillator as a model for human locomotion , 1990 .

[21]  H B Skinner,et al.  Ankle weighting effect on gait in able-bodied adults. , 1990, Archives of physical medicine and rehabilitation.

[22]  S. Larson,et al.  The role of propulsive muscles of the shoulder during quadrupedalism in vervet monkeys (Cercopithecus aethiops): implications for neural control of locomotion in primates. , 1989, Journal of motor behavior.

[23]  J. Fleagle Primate Adaptation and Evolution , 1989 .

[24]  M. Turvey,et al.  Maintenance tendency in co-ordinated rhythmic movements: Relative fluctuations and phase , 1988, Neuroscience.

[25]  J. Vilensky,et al.  Effects of size on Vervet (Cercopithecus aethiops) gait parameters: A cross‐sectional approach , 1988 .

[26]  M T Turvey,et al.  On the time allometry of co-ordinated rhythmic movements. , 1988, Journal of theoretical biology.

[27]  D. Pilbeam,et al.  Size and scaling in primate biology , 1986 .

[28]  P. E. Martin Mechanical and physiological responses to lower extremity loading during running. , 1985, Medicine and science in sports and exercise.

[29]  M. Hildebrand,et al.  Energy of the oscillating legs of a fast‐moving cheetah, pronghorn, jackrabbit, and elephant , 1985, Journal of morphology.

[30]  D. Bramble,et al.  Functional vertebrate morphology , 1985 .

[31]  R. M. Alexander,et al.  Walking and running , 1984, The Mathematical Gazette.

[32]  William L. Jungers,et al.  Body proportions, skeletal allometry and locomotion in the hadar hominids: a reply to Wolpoff , 1983 .

[33]  A. Biewener Allometry of quadrupedal locomotion: the scaling of duty factor, bone curvature and limb orientation to body size. , 1983, The Journal of experimental biology.

[34]  N. Heglund,et al.  Energetics and mechanics of terrestrial locomotion. I. Metabolic energy consumption as a function of speed and body size in birds and mammals. , 1982, The Journal of experimental biology.

[35]  G. E. Goslow,et al.  Electrical activity and relative length changes of dog limb muscles as a function of speed and gait. , 1981, The Journal of experimental biology.

[36]  R. Alexander,et al.  Allometry of the leg muscles of mammals , 1981 .

[37]  T. McMahon,et al.  Ballistic walking: an improved model , 1980 .

[38]  A. English,et al.  An electromyographic analysis of forelimb muscles during overground stepping in the cat. , 1978, The Journal of experimental biology.

[39]  A W English,et al.  Functional analysis of the shoulder girdle of cats during locomotion , 1978, Journal of morphology.

[40]  T. Grand Body weight: its relation to tissue composition, segment distribution, and motor function. I. Interspecific comparisons. , 1977, American journal of physical anthropology.

[41]  J. Fleagle,et al.  Locomotor behavior and muscular anatomy of sympatric Malaysian leaf-monkeys (Presbytis obscura and Presbytis melalophos). , 1977, American journal of physical anthropology.

[42]  R. Tuttle The Functional and evolutionary biology of primates , 1973 .

[43]  M. Bryce Muscles Alive: Their Functions Revealed by Electromyography , 1963 .

[44]  J. Basmajian Muscles Alive—their functions revealed by electromyography , 1963 .

[45]  E. Kaplan Muscles Alive. Their Functions Revealed by Electromyography. J. V. Basmajian. Baltimore, The Williams and Wilkins Co., 1962. $8.50 , 1962 .

[46]  P. Lemelin,et al.  Grasping Performance in Saguinus midas and the Evolution of Hand Prehensility in Primates , 1998 .

[47]  S. Larson Unique Aspects of Quadrupedal Locomotion in Nonhuman Primates , 1998 .

[48]  M. Gunther,et al.  Biomechanics and body shape in primates compared with horses , 1994 .

[49]  H. Preuschoft,et al.  Human body proportions explained on the basis of biomechanical principles. , 1991, Zeitschrift fur Morphologie und Anthropologie.

[50]  Carsten Niemitz,et al.  Gravity, posture and locomotion in primates , 1990 .

[51]  T R Reynolds,et al.  Stride length and its determinants in humans, early hominids, primates, and mammals. , 1987, American journal of physical anthropology.

[52]  Daniel DeMenthon,et al.  Measurement of body segment mass, center of gravity, and determination of moments of inertia by double pendulum in Lemur fulvus , 1987, American journal of primatology.

[53]  N. Heglund Comparative Energetics and Mechanics of Locomotion , 1985 .

[54]  William L. Jungers,et al.  Size and Scaling in Primate Biology , 1985, Advances in Primatology.

[55]  J. Vilensky,et al.  Masses, centers-of-gravity, and moments-of-inertia of the body segments of the rhesus monkey (Macaca mulatta). , 1978, American journal of physical anthropology.

[56]  M. Cartmill Arboreal Adaptations and the Origin of the Order Primates , 1972 .

[57]  Time-Life Books,et al.  WALKING AND RUNNING. , 1885, Science.