Current equations for velocity overshoot

A generalized current equation is presented for the operation of submicron devices by supplementing the drift and diffusion currents with gradient, rate and relaxation currents. The equation includes the most important features of velocity overshoot.

[1]  Applications of Path Integrals to Problems in Dissipation , 1978 .

[2]  P. H. Ladbrooke,et al.  The physics of excess electron velocity in submicron‐channel FET’s , 1977 .

[3]  C. Jacoboni,et al.  A review of some charge transport properties of silicon , 1977 .

[4]  Wolfgang Fichtner,et al.  ON THE NUMERICAL SOLUTION OF NONLINEAR ELLIPTIC PDEs ARISING FROM SEMICONDUCTOR DEVICE MODELING , 1981 .

[5]  K. K. Thornber,et al.  Applications of scaling to problems in high‐field electronic transport , 1981 .

[6]  Carlo Jacoboni,et al.  Bulk hot-electron properties of cubic semiconductors , 1979 .

[7]  J. G. Ruch,et al.  Electron dynamics in short channel field-effect transistors , 1972 .

[8]  Cube‐root broadening of surface‐charge packets , 1981 .

[9]  K. K. Thornber,et al.  Relation of drift velocity to low‐field mobility and high‐field saturation velocity , 1980 .

[10]  David K. Ferry,et al.  On the physics and modeling of small semiconductor devices—III: Transient response in the finite collision-duration regime , 1980 .

[11]  W. Fichtner,et al.  Experimental and theoretical characterization of submicron MOSFETs , 1980, 1980 International Electron Devices Meeting.

[12]  D. F. Nelson,et al.  Measurement of the high-field drift velocity of electrons in inversion layers on silicon , 1981, IEEE Electron Device Letters.

[13]  K. Thornber High-field electronic conduction in insulators , 1978 .

[14]  R. A. Logan,et al.  Picosecond nonequilibrium carrier transport in GaAs , 1981 .