Heat capacities and thermal conductivities of AmO2 and AmO1.5

Abstract The thermal diffusivity of AmO 2 was measured from 473 to 773 K and that of AmO 1.5 between 473 and 1373 K using a laser flash method. The enthalpy increment of AmO 2 was measured from 335 to 1081 K and that of AmO 1.5 between 335 and 1086 K using drop calorimetry. The heat capacities of AmO 2 and AmO 1.5 were derived from the enthalpy increment measurements. The thermal conductivity was determined from the measured thermal diffusivity, heat capacity and bulk density. The heat capacities of AmO 2 was found larger than that of AmO 1.5 . The thermal conductivities of AmO 2 and AmO 1.5 were found to decrease with increasing temperature in the investigated temperature range. The thermal conductivity of AmO 1.5 with A - type hexagonal structure was smaller than that of AmO 2 with C-type fluorite structure but larger than that of sub-stoichiometric AmO 1.73 .

[1]  K. Idemitsu,et al.  Thermal conductivity of non-stoichiometric americium oxide: A molecular dynamics study , 2010 .

[2]  T. Nishi,et al.  Thermal diffusivity of Americium mononitride from 373 to 1473 K , 2006 .

[3]  K. Idemitsu,et al.  Thermal conductivities of americium dioxide and sesquioxide by molecular dynamics simulations , 2009 .

[4]  J. Warren,et al.  Comment on ‘‘Analysis for determining thermal diffusivity from thermal pulse experiments’’ , 1995 .

[5]  P. V. Uffelen,et al.  Modelling thermal conductivity and self-irradiation effects in mixed oxide fuels , 2003 .

[6]  Y. Philipponneau,et al.  Thermal conductivity of (U, Pu)O2−x mixed oxide fuel , 1992 .

[7]  J. Marçalo,et al.  Determination of the ionization energy of NpO2 and comparative ionization energies of actinide oxides , 2005 .

[8]  Hitoshi Watanabe,et al.  The effect of gadolinium content on the thermal conductivity of near-stoichiometric (U,Gd)O2 solid solutions , 1981 .

[9]  R. A. Verrall,et al.  Thermal conductivity of hyperstoichiometric SIMFUEL , 1995 .

[10]  Yasuo Arai,et al.  Thermal conductivity of neptunium dioxide , 2008 .

[11]  T. D. Chikalla,et al.  Thermal expansion of the actinide dioxides , 1974 .

[12]  T. Nishi,et al.  Heat capacities of NpN and AmN , 2008 .

[13]  C. Ronchi,et al.  Thermal Conductivity of Uranium Dioxide up to 2900 K from Simultaneous Measurement of the Heat Capacity and Thermal Diffusivity. , 1999 .

[14]  Masato Kato,et al.  Thermal conductivities of hypostoichiometric (U, Pu, Am)O2−x oxide , 2008 .

[15]  Juan J. Carbajo,et al.  A review of the thermophysical properties of MOX and UO , 2001 .

[16]  T. Nishi,et al.  Thermal conductivity of AmO2−x , 2008 .

[17]  T. Baba,et al.  A high-temperature laser-pulse thermal diffusivity apparatus , 1994 .

[18]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[19]  Masato Kato,et al.  Solidus and liquidus temperatures in the UO2–PuO2 system , 2008 .

[20]  T. Nishi,et al.  Local and electronic structure of Am2O3 and AmO2 with XAFS spectroscopy , 2010 .

[21]  V. Sobolev Thermophysical properties of NpO2, AmO2 and CmO2 , 2009 .

[22]  R. L. Gibby,et al.  The effect of plutonium content on the thermal conductivity of (U, Pu)O2 solid solutions , 1971 .