A provably-robust sampling method for generating colormaps of large data

First impressions from initial renderings of data are crucial for directing further exploration and analysis. In most visualization systems, default colormaps are generated by simply linearly interpolating color in some space based on a value's placement between the minimum and maximum taken on by the dataset. We design a simple sampling-based method for generating colormaps that high-lights important features. We use random sampling to determine the distribution of values observed in the data. The sample size required is independent of the dataset size and only depends on certain accuracy parameters. This leads to a computationally cheap and robust algorithm for colormap generation. Our approach (1) uses perceptual color distance to produce palettes from color curves, (2) allows the user to either emphasize or de-emphasize prominent values in the data, (3) uses quantiles to map distinct colors to values based on their frequency in the dataset, and (4) supports the highlighting of either inter- or intra-mode variations in the data.

[1]  Karen Dragon Devine,et al.  MPSalsa a finite element computer program for reacting flow problems. Part 2 - user`s guide , 1996 .

[2]  Cynthia A. Brewer,et al.  ColorBrewer in Print: A Catalog of Color Schemes for Maps , 2003 .

[3]  Christine D. Piatko,et al.  A visibility matching tone reproduction operator for high dynamic range scenes , 1997, SIGGRAPH '97.

[4]  Georgia Albuquerque,et al.  Data Driven Color Mapping , 2011, EuroVA@EuroVis.

[5]  William E. Lorensen,et al.  The transfer function bake-off (panel session) , 2000, VIS '00.

[6]  Han-Wei Shen,et al.  View selection for volume rendering , 2005, VIS 05. IEEE Visualization, 2005..

[7]  G. Bansal Computational studies of autoignition and combustion in low temperature combustion engine environments , 2009 .

[8]  D. L. Macadam Visual Sensitivities to Color Differences in Daylight , 1942 .

[9]  Scott Klasky,et al.  Terascale direct numerical simulations of turbulent combustion using S3D , 2008 .

[10]  Cynthia A. Brewer,et al.  Guidelines for Selecting Colors for Diverging Schemes on Maps , 1996 .

[11]  Joe Michael Kniss,et al.  Multidimensional Transfer Functions for Interactive Volume Rendering , 2002, IEEE Trans. Vis. Comput. Graph..

[12]  Kenneth Moreland,et al.  Diverging Color Maps for Scientific Visualization , 2009, ISVC.

[13]  Erik Reinhard,et al.  Face-based luminance matching for perceptual colormap generation , 2002, IEEE Visualization, 2002. VIS 2002..

[14]  Cynthia A. Brewer,et al.  A Transition in Improving Maps: The ColorBrewer Example , 2003 .

[15]  Bernice E. Rogowitz,et al.  How not to lie with visualization , 1996 .

[16]  Krzysztof Z. Gajos,et al.  Evaluation of Artery Visualizations for Heart Disease Diagnosis , 2011, IEEE Transactions on Visualization and Computer Graphics.

[17]  Ramanan Sankaran,et al.  Three-dimensional direct numerical simulation of a turbulent lifted hydrogen jet flame in heated coflow: flame stabilization and structure , 2009, Journal of Fluid Mechanics.

[18]  Peter M. Will,et al.  Grid Coding: A Preprocessing Technique for Robot and Machine Vision , 1971, IJCAI.

[19]  David Borland,et al.  Rainbow Color Map (Still) Considered Harmful , 2007, IEEE Computer Graphics and Applications.

[20]  K. Gabriel,et al.  A Markov chain model for daily rainfall occurrence at Tel Aviv , 1962 .

[21]  N. Ison,et al.  Wet Period Precipitation and the Gamma Distribution. , 1971 .

[22]  David C. Thompson,et al.  Computing Contingency Statistics in Parallel: Design Trade-Offs and Limiting Cases , 2010, 2010 IEEE International Conference on Cluster Computing.

[23]  Abdul Aziz Jemain,et al.  Fitting Daily Rainfall Amount in Peninsular Malaysia Using Several Types of Exponential Distributions , 2007 .

[24]  Alessandro Panconesi,et al.  Concentration of Measure for the Analysis of Randomized Algorithms , 2009 .