Confocal Raman microspectroscopy reveals a convergence of the chemical composition in methanogenic archaea from a Siberian permafrost-affected soil.

Methanogenic archaea are widespread anaerobic microorganisms responsible for the production of biogenic methane. Several new species of psychrotolerant methanogenic archaea were recently isolated from a permafrost-affected soil in the Lena Delta (Siberia, Russia), showing an exceptional resistance against desiccation, osmotic stress, low temperatures, starvation, UV and ionizing radiation when compared to methanogens from non-permafrost environments. To gain a deeper insight into the differences observed in their resistance, we described the chemical composition of methanogenic strains from permafrost and non-permafrost environments using confocal Raman microspectroscopy (CRM). CRM is a powerful tool for microbial identification and provides fingerprint-like information about the chemical composition of the cells. Our results show that the chemical composition of methanogens from permafrost-affected soils presents a high homology and is remarkably different from strains inhabiting non-permafrost environments. In addition, we performed a phylogenetic reconstruction of the studied strains based on the functional gene mcrA to prove the different evolutionary relationship of the permafrost strains. We conclude that the permafrost methanogenic strains show a convergent chemical composition regardless of their genotype. This fact is likely to be the consequence of a complex adaptive process to the Siberian permafrost environment and might be the reason underlying their resistant nature.

[1]  P. Rettberg,et al.  Enhanced Radiation Resistance of Methanosarcina soligelidi SMA-21, a New Methanogenic Archaeon Isolated from a Siberian Permafrost-Affected Soil in Direct Comparison to Methanosarcina barkeri. , 2015, Astrobiology.

[2]  P. Lasch,et al.  Single-cell analysis of the methanogenic archaeon Methanosarcina soligelidi from Siberian permafrost by means of confocal Raman microspectrocopy for astrobiological research , 2014 .

[3]  Hans-Gerd Löhmannsröben,et al.  Laser spectroscopic real time measurements of methanogenic activity under simulated Martian subsurface analog conditions , 2014 .

[4]  S. Zinder,et al.  Methanobacterium paludis sp. nov. and a novel strain of Methanobacterium lacus isolated from northern peatlands. , 2014, International journal of systematic and evolutionary microbiology.

[5]  C. Evilia,et al.  Protein Adaptations in Archaeal Extremophiles , 2013, Archaea.

[6]  D. Wagner,et al.  Methanosarcina soligelidi sp. nov., a desiccation- and freeze-thaw-resistant methanogenic archaeon from a Siberian permafrost-affected soil. , 2013, International journal of systematic and evolutionary microbiology.

[7]  Xiuzhu Dong,et al.  Psychrotolerant methanogenic archaea: Diversity and cold adaptation mechanisms , 2012, Science China Life Sciences.

[8]  Gennaro Roberto Abbamondi,et al.  Synthesis, Production, and Biotechnological Applications of Exopolysaccharides and Polyhydroxyalkanoates by Archaea , 2011, Archaea.

[9]  J. Ferry The chemical biology of methanogenesis , 2010 .

[10]  J. Peter Gogarten,et al.  Horizontal gene transfer from extinct and extant lineages: biological innovation and the coral of life , 2009, Philosophical Transactions of the Royal Society B: Biological Sciences.

[11]  P. Lasch,et al.  Phenotypic heterogeneity within microbial populations at the single-cell level investigated by confocal Raman microspectroscopy. , 2009, The Analyst.

[12]  D. Anselmetti Single cell analysis: Technologies and applications Dario Anselmetti (Ed.) Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2009, pp. 284 ISBN: 978‐3‐527‐31864‐3 , 2009 .

[13]  J. Popp,et al.  Vibrational spectroscopy—A powerful tool for the rapid identification of microbial cells at the single‐cell level , 2009, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[14]  Jürgen Popp,et al.  Localizing and identifying living bacteria in an abiotic environment by a combination of Raman and fluorescence microscopy. , 2008, Analytical chemistry.

[15]  Anne-Kristin Kaster,et al.  Methanogenic archaea: ecologically relevant differences in energy conservation , 2008, Nature Reviews Microbiology.

[16]  W. Whitman,et al.  Metabolic, Phylogenetic, and Ecological Diversity of the Methanogenic Archaea , 2008, Annals of the New York Academy of Sciences.

[17]  D. Wagner,et al.  Stress response of methanogenic archaea from Siberian permafrost compared with methanogens from nonpermafrost habitats. , 2007, FEMS microbiology ecology.

[18]  E. Delong,et al.  Structure and Function of Cold Shock Proteins in Archaea , 2007, Journal of bacteriology.

[19]  Daria Morozova,et al.  Survival of Methanogenic Archaea from Siberian Permafrost under Simulated Martian Thermal Conditions , 2007, Origins of Life and Evolution of Biospheres.

[20]  Jürgen Popp,et al.  Towards a detailed understanding of bacterial metabolism--spectroscopic characterization of Staphylococcus epidermidis. , 2007, Chemphyschem : a European journal of chemical physics and physical chemistry.

[21]  E. Pikuta,et al.  Microbial Extremophiles at the Limits of Life , 2007, Critical reviews in microbiology.

[22]  Georgios S. Vernikos,et al.  Interpolated variable order motifs for identification of horizontally acquired DNA: revisiting the Salmonella pathogenicity islands , 2006, Bioinform..

[23]  D. Naumann Infrared Spectroscopy in Microbiology , 2006 .

[24]  D. Naumann,et al.  Vibrational Spectroscopic Studies of Microorganisms , 2006 .

[25]  R. Cavicchioli Cold-adapted archaea , 2006, Nature Reviews Microbiology.

[26]  Andreas Gattinger,et al.  Methane fluxes in permafrost habitats of the Lena Delta: effects of microbial community structure and organic matter quality. , 2005, Environmental microbiology.

[27]  Michael Schmitt,et al.  Chemotaxonomic Identification of Single Bacteria by Micro-Raman Spectroscopy: Application to Clean-Room-Relevant Biological Contaminations , 2005, Applied and Environmental Microbiology.

[28]  Airton A. Martin,et al.  Diagnosis of squamous cell carcinoma of human skin by Raman spectroscopy , 2004, SPIE BiOS.

[29]  E. Pfeiffer,et al.  Element Redistribution along Hydraulic and Redox Gradients of Low-Centered Polygons, Lena Delta, Northern Siberia , 2004 .

[30]  J. Yavitt,et al.  Methane Biogeochemistry and Methanogen Communities in Two Northern Peatland Ecosystems, New York State , 2003 .

[31]  Zhixiong Xie,et al.  Horizontal Gene Transfer , 2003, Methods in Molecular Biology.

[32]  E. Pfeiffer,et al.  Microbial controls on methane fluxes from a polygonal tundra of the Lena Delta, Siberia , 2003 .

[33]  P. Luton,et al.  The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill. , 2002, Microbiology.

[34]  J. García,et al.  Methanobacterium congolense sp. nov., from a methanogenic fermentation of cassava peel. , 2001, International journal of systematic and evolutionary microbiology.

[35]  T. Thomas,et al.  Cold stress response in Archaea , 2000, Extremophiles.

[36]  J. Lake,et al.  Horizontal gene transfer among genomes: the complexity hypothesis. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[37]  H. Aldrich,et al.  Methanogenium frigidum sp. nov., a psychrophilic, H2-using methanogen from Ace Lake, Antarctica. , 1997, International journal of systematic bacteriology.

[38]  J. Thompson,et al.  CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. , 1994, Nucleic acids research.

[39]  James G. Ferry,et al.  Methanogenesis : Ecology, Physiology, Biochemistry and Genetics , 1994 .

[40]  R. Thauer Methanogenesis: Ecology, physiology, biochemistry and genetics: edited by James G. Ferry, Chapman & Hall, 1993. $75.00 (x + 536 pages) ISBN 0 412 03531 6 , 1994 .

[41]  Tslil Ophir,et al.  A Role for Exopolysaccharides in the Protection of Microorganisms from Desiccation , 1994, Applied and environmental microbiology.

[42]  M. A. Petrova,et al.  Cryoprotective properties of water in the Earth cryolithosphere and its role in exobiology , 1993, Origins of life and evolution of the biosphere.

[43]  M. Sachs,et al.  Taxonomy and Halotolerance of Mesophilic Methanosarcina Strains, Assignment of Strains to Species, and Synonymy of Methanosarcina mazei and Methanosarcina frisia , 1992 .

[44]  Harald Labischinski,et al.  Elaboration of a procedure for identification of bacteria using Fourier-Transform IR spectral libraries: a stepwise correlation approach , 1991 .

[45]  Robert Huber,et al.  Methanopyrus kandleri, gen. and sp. nov. represents a novel group of hyperthermophilic methanogens, growing at 110°C , 1991, Archives of Microbiology.

[46]  J. Lerner,et al.  Three‐dimensional model synthesis of the global methane cycle , 1991 .

[47]  A. Klein,et al.  Cloning and characterization of the methyl coenzyme M reductase genes from Methanobacterium thermoautotrophicum , 1988, Journal of bacteriology.

[48]  N. Pfennig,et al.  Isolation and characterization of a nicotinic acid-degrading sulfate-reducing bacterium, Desulfococcus niacini sp. nov. , 1983, Archives of Microbiology.

[49]  R. Murray,et al.  Nomenclature for “Micrococcus radiodurans” and Other Radiation-Resistant Cocci: Deinococcaceae fam. nov. and Deinococcus gen. nov., Including Five Species , 1981 .

[50]  R. Mah Isolation and characterization ofMethanococcus mazei , 1980, Current Microbiology.

[51]  C. Woese,et al.  Methanogens: reevaluation of a unique biological group , 1979, Microbiological reviews.

[52]  M. P. Bryant,et al.  Nutrient Requirements of Methanogenic Bacteria , 1971 .

[53]  H. Kowarzyk Structure and Function. , 1910, Nature.

[54]  R. Niessner,et al.  Towards a nondestructive chemical characterization of biofilm matrix by Raman microscopy , 2009, Analytical and bioanalytical chemistry.

[55]  Michael Y. Galperin,et al.  The genome sequence of the psychrophilic archaeon, Methanococcoides burtonii: the role of genome evolution in cold adaptation , 2009, The ISME Journal.

[56]  G. Fournier Horizontal gene transfer and the evolution of methanogenic pathways. , 2009, Methods in molecular biology.

[57]  W. BROOKST,et al.  Nomenclature for “ Micrococcus radiodurans ” and Other Radiation-Resistant Cocci : Deinococcaceae fam . nov . and Deinococcus gen . nov . , Including Five Species , 2008 .

[58]  W. Whitman,et al.  Physiology and Biochemistry of the Methane-Producing Archaea , 2006 .

[59]  F. Tomita,et al.  ISOLATION AND CHARACTERIZATION OF FLAVONOID COMPOUND FROM FERONIA LIMONIA , 2015 .

[60]  A. Nozhevnikova,et al.  Isolation and characterization of new strains of methanogens from cold terrestrial habitats. , 2003, Systematic and applied microbiology.

[61]  G. Socrates,et al.  Infrared and Raman characteristic group frequencies : tables and charts , 2001 .

[62]  Черемисин,et al.  RUSSIAN ACADEMY OF SCIENCE , 1993 .

[63]  J. Reeve Molecular biology of methanogens. , 1992, Annual review of microbiology.