Tackling neurodegenerative diseases: animal models of Alzheimer’s disease and Parkinson’s disease

[1]  G. Bánhegyi,et al.  Physiological functions of presenilins; beyond γ-secretase. , 2014, Current pharmaceutical biotechnology.

[2]  C. Haass,et al.  Loss of Bace2 in zebrafish affects melanocyte migration and is distinct from Bace1 knock out phenotypes , 2013, Journal of neurochemistry.

[3]  James E. DiCarlo,et al.  RNA-Guided Human Genome Engineering via Cas9 , 2013, Science.

[4]  Le Cong,et al.  Multiplex Genome Engineering Using CRISPR/Cas Systems , 2013, Science.

[5]  Seung Woo Cho,et al.  Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease , 2013, Nature Biotechnology.

[6]  D. B. Rosemberg,et al.  Zebrafish neurotransmitter systems as potential pharmacological and toxicological targets. , 2011, Neurotoxicology and teratology.

[7]  M. Ekker,et al.  Modeling Neurodegeneration in Zebrafish , 2011, Current neurology and neuroscience reports.

[8]  B. de Strooper,et al.  Novel research horizons for presenilins and γ-secretases in cell biology and disease. , 2010, Annual review of cell and developmental biology.

[9]  E. Rebar,et al.  Genome editing with engineered zinc finger nucleases , 2010, Nature Reviews Genetics.

[10]  F. Hirth Drosophila melanogaster in the Study of Human Neurodegeneration , 2010, CNS & neurological disorders drug targets.

[11]  C. Haass,et al.  Parkin Is Protective against Proteotoxic Stress in a Transgenic Zebrafish Model , 2010, PloS one.

[12]  D. Shepherd,et al.  Aβ exacerbates the neuronal dysfunction caused by human tau expression in a Drosophila model of Alzheimer's disease , 2010, Experimental Neurology.

[13]  W. Sung,et al.  Deletion of the WD40 Domain of LRRK2 in Zebrafish Causes Parkinsonism-Like Loss of Neurons and Locomotive Defect , 2010, PLoS genetics.

[14]  Leonard I Zon,et al.  Swimming into the future of drug discovery: in vivo chemical screens in zebrafish. , 2010, ACS chemical biology.

[15]  J. Buxbaum,et al.  Enhanced Striatal Dopamine Transmission and Motor Performance with LRRK2 Overexpression in Mice Is Eliminated by Familial Parkinson's Disease Mutation G2019S , 2010, The Journal of Neuroscience.

[16]  Joel Ryan,et al.  Impaired dopaminergic neuron development and locomotor function in zebrafish with loss of pink1 function , 2010, The European journal of neuroscience.

[17]  J. Shulman,et al.  Evidence for a common pathway linking neurodegenerative diseases , 2009, Nature Genetics.

[18]  S. Pimplikar,et al.  Amyloid precursor protein is required for convergent-extension movements during Zebrafish development. , 2009, Developmental biology.

[19]  R. Martins,et al.  Independent and cooperative action of Psen2 with Psen1 in zebrafish embryos. , 2009, Experimental cell research.

[20]  M. Cookson,et al.  LRRK2 Modulates Vulnerability to Mitochondrial Dysfunction in Caenorhabditis elegans , 2009, The Journal of Neuroscience.

[21]  R. Burke,et al.  Mutant LRRK2R1441G BAC transgenic mice recapitulate cardinal features of Parkinson's disease , 2009, Nature Neuroscience.

[22]  R. Nussbaum,et al.  Parkinson Phenotype in Aged PINK1-Deficient Mice Is Accompanied by Progressive Mitochondrial Dysfunction in Absence of Neurodegeneration , 2009, PloS one.

[23]  J. Hardy,et al.  The genetics of Parkinson's syndromes: a critical review. , 2009, Current opinion in genetics & development.

[24]  S. Hellberg,et al.  A zebrafish model of tauopathy allows in vivo imaging of neuronal cell death and drug evaluation. , 2009, The Journal of clinical investigation.

[25]  M. Chesselet,et al.  Bacterial Artificial Chromosome Transgenic Mice Expressing a Truncated Mutant Parkin Exhibit Age-Dependent Hypokinetic Motor Deficits, Dopaminergic Neuron Degeneration, and Accumulation of Proteinase K-Resistant α-Synuclein , 2009, The Journal of Neuroscience.

[26]  M. Ohno,et al.  Impairments in remote memory stabilization precede hippocampal synaptic and cognitive failures in 5XFAD Alzheimer mouse model , 2009, Neurobiology of Disease.

[27]  R. Strauss,et al.  Neurotoxic effects induced by the Drosophila amyloid-β peptide suggest a conserved toxic function , 2009, Neurobiology of Disease.

[28]  H. Hutter,et al.  A Caenorhabditis elegans model of tau hyperphosphorylation: Induction of developmental defects by transgenic overexpression of Alzheimer's disease-like modified tau , 2009, Neurobiology of Aging.

[29]  L. Goldstein,et al.  Amyloid precursor protein-induced axonopathies are independent of amyloid-beta peptides. , 2008, Human molecular genetics.

[30]  K. Raley-Susman,et al.  The invertebrate microtubule-associated protein PTL-1 functions in mechanosensation and development in Caenorhabditis elegans , 2008, Development Genes and Evolution.

[31]  Jie Shen,et al.  Loss of PINK1 causes mitochondrial functional defects and increased sensitivity to oxidative stress , 2008, Proceedings of the National Academy of Sciences.

[32]  M. Chesselet,et al.  Olfactory deficits in mice overexpressing human wildtype α‐synuclein , 2008, The European journal of neuroscience.

[33]  Fei Liu,et al.  Microtubule-associated protein tau in development, degeneration and protection of neurons , 2008, Progress in Neurobiology.

[34]  H. Braak,et al.  Invited Article: Nervous system pathology in sporadic Parkinson disease , 2008, Neurology.

[35]  A. Korczyn The amyloid cascade hypothesis , 2008, Alzheimer's & Dementia.

[36]  I. Hakker,et al.  Aβ42 Mutants with Different Aggregation Profiles Induce Distinct Pathologies in Drosophila , 2008, PloS one.

[37]  R. Martins,et al.  Interference with splicing of Presenilin transcripts has potent dominant negative effects on Presenilin activity. , 2008, Human molecular genetics.

[38]  V. Bader,et al.  Mono- and double-mutant mouse models of Parkinson's disease display severe mitochondrial damage. , 2007, Human molecular genetics.

[39]  O. Güntürkün,et al.  Non‐motor behavioural impairments in parkin‐deficient mice , 2007, The European journal of neuroscience.

[40]  N. Hukriede,et al.  Generation of a transgenic zebrafish model of Tauopathy using a novel promoter element derived from the zebrafish eno2 gene , 2007, Nucleic Acids Research.

[41]  Ruifeng Lu,et al.  Drosophila Overexpressing Parkin R275W Mutant Exhibits Dopaminergic Neuron Degeneration and Mitochondrial Abnormalities , 2007, The Journal of Neuroscience.

[42]  Douglas R. Porter,et al.  Impaired dopamine release and synaptic plasticity in the striatum of PINK1-deficient mice , 2007, Proceedings of the National Academy of Sciences.

[43]  J. D. McGaugh,et al.  Learning Decreases Aβ*56 and Tau Pathology and Ameliorates Behavioral Decline in 3xTg-AD Mice , 2007, The Journal of Neuroscience.

[44]  O. Bandmann,et al.  p53‐dependent neuronal cell death in a DJ‐1‐deficient zebrafish model of Parkinson's disease , 2006, Journal of neurochemistry.

[45]  Y. Christen,et al.  Amyloid-β-Induced Pathological Behaviors Are Suppressed by Ginkgo biloba Extract EGb 761 and Ginkgolides in Transgenic Caenorhabditis elegans , 2006, The Journal of Neuroscience.

[46]  M. Ohno,et al.  Intraneuronal β-Amyloid Aggregates, Neurodegeneration, and Neuron Loss in Transgenic Mice with Five Familial Alzheimer's Disease Mutations: Potential Factors in Amyloid Plaque Formation , 2006, The Journal of Neuroscience.

[47]  C. Link C. elegans models of age-associated neurodegenerative diseases: Lessons from transgenic worm models of Alzheimer’s disease , 2006, Experimental Gerontology.

[48]  Hui Zheng,et al.  Molecular Neurodegeneration BioMed Central Review The amyloid precursor protein: beyond amyloid , 2006 .

[49]  Sunhong Kim,et al.  Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin , 2006, Nature.

[50]  Changan Jiang,et al.  Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin , 2006, Nature.

[51]  Huaxi Xu,et al.  Pathological and physiological functions of presenilins , 2006, Molecular Neurodegeneration.

[52]  Mark Bowlby,et al.  Early-onset behavioral and synaptic deficits in a mouse model of Alzheimer's disease. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[53]  M. Gallagher,et al.  A specific amyloid-β protein assembly in the brain impairs memory , 2006, Nature.

[54]  Stephen T. C. Wong,et al.  Zebrafish lacking Alzheimer presenilin enhancer 2 (Pen‐2) demonstrate excessive p53‐dependent apoptosis and neuronal loss , 2006, Journal of neurochemistry.

[55]  J. Trojanowski,et al.  Neurodegenerative diseases: new concepts of pathogenesis and their therapeutic implications. , 2006, Annual review of pathology.

[56]  T. Iwatsubo,et al.  Familial Parkinson Mutant α-Synuclein Causes Dopamine Neuron Dysfunction in Transgenic Caenorhabditis elegans* , 2006, Journal of Biological Chemistry.

[57]  D. Price,et al.  Parkinson's Disease α-Synuclein Transgenic Mice Develop Neuronal Mitochondrial Degeneration and Cell Death , 2006, The Journal of Neuroscience.

[58]  Michela Gallagher,et al.  A specific amyloid-beta protein assembly in the brain impairs memory. , 2006, Nature.

[59]  D. Price,et al.  Parkinson's disease alpha-synuclein transgenic mice develop neuronal mitochondrial degeneration and cell death. , 2006, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[60]  Richard M. Page,et al.  Intraneuronal Aβ, non-amyloid aggregates and neurodegeneration in a Drosophila model of Alzheimer’s disease , 2005, Neuroscience.

[61]  T. Hoppe,et al.  A Caenorhabditis elegans Parkin mutant with altered solubility couples alpha-synuclein aggregation to proteotoxic stress. , 2005, Human molecular genetics.

[62]  K. Gengyo-Ando,et al.  Progressive neurodegeneration in C. elegans model of tauopathy , 2005, Neurobiology of Disease.

[63]  Andrew B West,et al.  Molecular pathophysiology of Parkinson's disease. , 2005, Annual review of neuroscience.

[64]  Tiffany Mathews,et al.  Age-dependent Motor Deficits and Dopaminergic Dysfunction in DJ-1 Null Mice* , 2005, Journal of Biological Chemistry.

[65]  David S. Park,et al.  Hypersensitivity of DJ-1-deficient mice to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrindine (MPTP) and oxidative stress. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[66]  J. D. McGaugh,et al.  Intraneuronal Aβ Causes the Onset of Early Alzheimer’s Disease-Related Cognitive Deficits in Transgenic Mice , 2005, Neuron.

[67]  E. Masliah,et al.  Axonopathy and Transport Deficits Early in the Pathogenesis of Alzheimer's Disease , 2005, Science.

[68]  P. Calabresi,et al.  Nigrostriatal Dopaminergic Deficits and Hypokinesia Caused by Inactivation of the Familial Parkinsonism-Linked Gene DJ-1 , 2005, Neuron.

[69]  N. Shahani,et al.  Tau alteration and neuronal degeneration in tauopathies: mechanisms and models. , 2005, Biochimica et biophysica acta.

[70]  Jonathan Salcedo,et al.  Early and Progressive Sensorimotor Anomalies in Mice Overexpressing Wild-Type Human α-Synuclein , 2004, The Journal of Neuroscience.

[71]  Kurt Bürki,et al.  Aβ is targeted to the vasculature in a mouse model of hereditary cerebral hemorrhage with amyloidosis , 2004, Nature Neuroscience.

[72]  M. Konsolaki,et al.  A model for studying Alzheimer's Aβ42-induced toxicity in Drosophila melanogaster , 2004, Molecular and Cellular Neuroscience.

[73]  F. Bloom,et al.  Selective vulnerability of dentate granule cells prior to amyloid deposition in PDAPP mice: digital morphometric analyses. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[74]  Ann-Shyn Chiang,et al.  Dissecting the pathological effects of human Aβ40 and Aβ42 in Drosophila: A potential model for Alzheimer's disease , 2004 .

[75]  R. Nitsch,et al.  Age-Dependent Neurodegeneration and Alzheimer-Amyloid Plaque Formation in Transgenic Drosophila , 2004, The Journal of Neuroscience.

[76]  Jesus Avila,et al.  Role of tau protein in both physiological and pathological conditions. , 2004, Physiological reviews.

[77]  C. Haass Take five—BACE and the γ‐secretase quartet conduct Alzheimer's amyloid β‐peptide generation , 2004 .

[78]  C. Haass Take five--BACE and the gamma-secretase quartet conduct Alzheimer's amyloid beta-peptide generation. , 2004, The EMBO journal.

[79]  M. Chesselet,et al.  Early and progressive sensorimotor anomalies in mice overexpressing wild-type human alpha-synuclein. , 2004, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[80]  Ann-Shyn Chiang,et al.  Dissecting the pathological effects of human Abeta40 and Abeta42 in Drosophila: a potential model for Alzheimer's disease. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[81]  F. LaFerla,et al.  Amyloid deposition precedes tangle formation in a triple transgenic model of Alzheimer’s disease , 2003, Neurobiology of Aging.

[82]  Janel O. Johnson,et al.  α-Synuclein Locus Triplication Causes Parkinson's Disease , 2003, Science.

[83]  M. Lardelli,et al.  Developmental control of Presenilin1 expression, endoproteolysis, and interaction in zebrafish embryos. , 2003, Experimental cell research.

[84]  D. Holtzman,et al.  Apolipoprotein E Markedly Facilitates Age-Dependent Cerebral Amyloid Angiopathy and Spontaneous Hemorrhage in Amyloid Precursor Protein Transgenic Mice , 2003, The Journal of Neuroscience.

[85]  M. Mattson,et al.  Triple-Transgenic Model of Alzheimer's Disease with Plaques and Tangles Intracellular Aβ and Synaptic Dysfunction , 2003, Neuron.

[86]  Bin Zhang,et al.  Neurodegeneration and defective neurotransmission in a Caenorhabditis elegans model of tauopathy , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[87]  V. Buchman,et al.  Part II: α-synuclein and its molecular pathophysiological role in neurodegenerative disease , 2003, Neuropharmacology.

[88]  R. Blakely,et al.  Dopaminergic neuronal loss and motor deficits in Caenorhabditis elegans overexpressing human α‐synuclein , 2003, Journal of neurochemistry.

[89]  F. Bloom,et al.  Amyloid deposition in the hippocampus and entorhinal cortex: Quantitative analysis of a transgenic mouse model , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[90]  B. Strooper,et al.  Aph-1, Pen-2, and Nicastrin with Presenilin Generate an Active γ-Secretase Complex , 2003, Neuron.

[91]  Russell E Jacobs,et al.  Dentate gyrus volume is reduced before onset of plaque formation in PDAPP mice: A magnetic resonance microscopy and stereologic analysis , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[92]  V. Buchman,et al.  Part II: alpha-synuclein and its molecular pathophysiological role in neurodegenerative disease. , 2003, Neuropharmacology.

[93]  B. de Strooper,et al.  Aph-1, Pen-2, and Nicastrin with Presenilin generate an active gamma-Secretase complex. , 2003, Neuron.

[94]  J. Wood,et al.  Transgenic zebrafish model of neurodegeneration , 2002, Journal of neuroscience research.

[95]  T. Hashikawa,et al.  Tau filament formation and associative memory deficit in aged mice expressing mutant (R406W) human tau , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[96]  Nancy A. Jenkins,et al.  Human α-synuclein-harboring familial Parkinson's disease-linked Ala-53 → Thr mutation causes neurodegenerative disease with α-synuclein aggregation in transgenic mice , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[97]  Makoto Hashimoto,et al.  Differential neuropathological alterations in transgenic mice expressing α‐synuclein from the platelet‐derived growth factor and Thy‐1 promoters , 2002, Journal of neuroscience research.

[98]  D. Geschwind,et al.  Human Wild-Type Tau Interacts with wingless Pathway Components and Produces Neurofibrillary Pathology in Drosophila , 2002, Neuron.

[99]  Koji Abe,et al.  Amyloid cored plaques in Tg2576 transgenic mice are characterized by giant plaques, slightly activated microglia, and the lack of paired helical filament-typed, dystrophic neurites , 2002, Virchows Archiv.

[100]  D. P. Thompson,et al.  Caenorhabditis elegans: how good a model for veterinary parasites? , 2001, Veterinary parasitology.

[101]  R. Nitsch,et al.  Formation of Neurofibrillary Tangles in P301L Tau Transgenic Mice Induced by Aβ42 Fibrils , 2001, Science.

[102]  J. Hardy,et al.  Enhanced Neurofibrillary Degeneration in Transgenic Mice Expressing Mutant Tau and APP , 2001, Science.

[103]  S. Turner,et al.  Early-onset Amyloid Deposition and Cognitive Deficits in Transgenic Mice Expressing a Double Mutant Form of Amyloid Precursor Protein 695* , 2001, The Journal of Biological Chemistry.

[104]  Joshua M. Shulman,et al.  Tauopathy in Drosophila: Neurodegeneration Without Neurofibrillary Tangles , 2001, Science.

[105]  David H. Hall,et al.  Visualization of fibrillar amyloid deposits in living, transgenic Caenorhabditis elegans animals using the sensitive amyloid dye, X-34 , 2001, Neurobiology of Aging.

[106]  M. Staufenbiel,et al.  Spontaneous Hemorrhagic Stroke in a Mouse Model of Cerebral Amyloid Angiopathy , 2001, The Journal of Neuroscience.

[107]  J. Trojanowski,et al.  Age-dependent induction of congophilic neurofibrillary tau inclusions in tau transgenic mice. , 2001, The American journal of pathology.

[108]  R. Nitsch,et al.  Tau Filament Formation in Transgenic Mice Expressing P301L Tau* , 2001, The Journal of Biological Chemistry.

[109]  Darren W. Williams,et al.  Tau and tau reporters disrupt central projections of sensory neurons in Drosophila , 2000, The Journal of comparative neurology.

[110]  Guiquan Chen,et al.  A learning deficit related to age and β-amyloid plaques in a mouse model of Alzheimer's disease , 2000, Nature.

[111]  R. Nitsch,et al.  In Vivo Analysis of Wild‐type and FTDP‐17 Tau Transgenic Mice , 2000, Annals of the New York Academy of Sciences.

[112]  Hsiao-Wen Chen,et al.  Unusual spectral energy distribution of a galaxy previously reported to be at redshift 6.68 , 2000, Nature.

[113]  M. Citron,et al.  Aβ-Generating Enzymes Recent Advances in β- and γ-Secretase Research , 2000, Neuron.

[114]  Christian Haass,et al.  Subcellular Localization of Wild-Type and Parkinson's Disease-Associated Mutant α-Synuclein in Human and Transgenic Mouse Brain , 2000, The Journal of Neuroscience.

[115]  Pico Caroni,et al.  Neuropathology in Mice Expressing Human α-Synuclein , 2000, The Journal of Neuroscience.

[116]  R. A. Crowther,et al.  Axonopathy and amyotrophy in mice transgenic for human four-repeat tau protein , 2000, Acta Neuropathologica.

[117]  S. Paul,et al.  Neuroanatomical Abnormalities in Behaviorally Characterized APPV717F Transgenic Mice , 2000, Neurobiology of Disease.

[118]  P. Davies,et al.  Characterization of Pathology in Transgenic Mice Over-Expressing Human Genomic and cDNA Tau Transgenes , 2000, Neurobiology of Disease.

[119]  C. Haass,et al.  Presenilin-1 differentially facilitates endoproteolysis of the β-amyloid precursor protein and Notch , 2000, Nature Cell Biology.

[120]  W. Bender,et al.  A Drosophila model of Parkinson's disease , 2000, Nature.

[121]  L. Mucke,et al.  Dopaminergic loss and inclusion body formation in alpha-synuclein mice: implications for neurodegenerative disorders. , 2000, Science.

[122]  Jada Lewis Neurofibrillary tangles, amyotrophy and progressive motor disturbance in mice expressing mutant (P301L) tau protein , 2000, Nature Genetics.

[123]  P. Caroni,et al.  Neuropathology in mice expressing human alpha-synuclein. , 2000, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[124]  M. Citron,et al.  Abeta-generating enzymes: recent advances in beta- and gamma-secretase research. , 2000, Neuron.

[125]  H. Geerts,et al.  Prominent axonopathy in the brain and spinal cord of transgenic mice overexpressing four-repeat human tau protein. , 1999, The American journal of pathology.

[126]  B. Sommer,et al.  Neuronal overexpression of mutant amyloid precursor protein results in prominent deposition of cerebrovascular amyloid. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[127]  Cori Bargmann Neurobiology of the Caenorhabditis elegans genome. , 1998, Science.

[128]  Ronald C. Petersen,et al.  Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17 , 1998, Nature.

[129]  J. Hardy,et al.  Accelerated Alzheimer-type phenotype in transgenic mice carrying both mutant amyloid precursor protein and presenilin 1 transgenes , 1998, Nature Medicine.

[130]  B. Sommer,et al.  Two amyloid precursor protein transgenic mouse models with Alzheimer disease-like pathology. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[131]  Robert L. Nussbaum,et al.  Mutation in the α-Synuclein Gene Identified in Families with Parkinson's Disease , 1997 .

[132]  E. Masliah,et al.  Neurodegeneration and cognitive impairment in apoE-deficient mice is ameliorated by infusion of recombinant apoE , 1997, Brain Research.

[133]  S E Ide,et al.  Mutation in the alpha-synuclein gene identified in families with Parkinson's disease. , 1997, Science.

[134]  Weiming Xia,et al.  Mutant presenilins of Alzheimer's disease increase production of 42-residue amyloid β-protein in both transfected cells and transgenic mice , 1997, Nature Medicine.

[135]  J. Ahringer,et al.  PTL-1, a microtubule-associated protein with tau-like repeats from the nematode Caenorhabditis elegans. , 1996, Journal of cell science.

[136]  Allan I. Levey,et al.  Familial Alzheimer's Disease–Linked Presenilin 1 Variants Elevate Aβ1–42/1–40 Ratio In Vitro and In Vivo , 1996, Neuron.

[137]  J. Hardy,et al.  Increased amyloid-β42(43) in brains of mice expressing mutant presenilin 1 , 1996, Nature.

[138]  S. Younkin,et al.  Correlative Memory Deficits, Aβ Elevation, and Amyloid Plaques in Transgenic Mice , 1996, Science.

[139]  J. McDermott,et al.  ptl-1, a Caenorhabditis elegans gene whose products are homologous to the tau microtubule-associated proteins. , 1996, Biochemistry.

[140]  A. Roses,et al.  Neurodegeneration in the Central Nervous System of apoE-Deficient Mice , 1995, Experimental Neurology.

[141]  D. Michaelson,et al.  Memory deficits and cholinergic impairments in apolipoprotein E-deficient mice , 1995, Neuroscience Letters.

[142]  C. Link,et al.  Expression of human beta-amyloid peptide in transgenic Caenorhabditis elegans. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[143]  G. Dawson,et al.  β-amyloid precursor protein-deficient mice show reactive gliosis and decreased locomotor activity , 1995, Cell.

[144]  L. Mucke,et al.  Alzheimer-type neuropathology in transgenic mice overexpressing V717F β-amyloid precursor protein , 1995, Nature.

[145]  A. M. Saunders,et al.  Protective effect of apolipoprotein E type 2 allele for late onset Alzheimer disease , 1994, Nature Genetics.

[146]  J. Haines,et al.  Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. , 1993, Science.

[147]  M. Pericak-Vance,et al.  Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[148]  M A Pericak-Vance,et al.  Association of apolipoprotein E allele epsilon 4 with late-onset familial and sporadic Alzheimer's disease. , 1993, Neurology.

[149]  D. Selkoe The molecular pathology of Alzheimer's disease , 1991, Neuron.