Fisher information and optimal schemes in progressive Type-II censored samples

This article deals with two results for the computation of the Fisher information (FI) in progressive Type-II censored data; the results simplifies the calculation of the FI in any progressive censored data. The FI is presented as a sum of the FI in the smallest order statistics. The results are used to obtain the optimal censoring schemes in the progressive Type-II censored data for two optimality criteria that are based on the inverse of the exact FI. The methodology is illustrated with the normal and the Weibull distributions, which are popular models in the lifetime analysis.

[1]  Shuo-Jye Wu ESTIMATIONS OF THE PARAMETERS OF THE WEIBULL DISTRIBUTION WITH PROGRESSIVELY CENSORED DATA , 2002 .

[2]  Arturo J. Fernández On estimating exponential parameters with general type II progressive censoring , 2004 .

[3]  Narayanaswamy Balakrishnan,et al.  Interval Estimation of Parameters of Life From Progressively Censored Data , 1994 .

[4]  Richard A. Johnson,et al.  Exact fisher information for censored samples and the extended hazard rate functions , 1979 .

[5]  N. Balakrishnan,et al.  Point and interval estimation for Gaussian distribution, based on progressively Type-II censored samples , 2003, IEEE Trans. Reliab..

[6]  N. Balakrishnan,et al.  Inference for the extreme value distribution under progressive Type-II censoring , 2004 .

[7]  Udo Kamps,et al.  On optimal schemes in progressive censoring , 2006 .

[8]  Z. A. Abo-Eleneen,et al.  Fisher Information in an Order Statistic and its Concomitant , 2002 .

[9]  J. Tukey WHICH PART OF THE SAMPLE CONTAINS THE INFORMATION? , 1965, Proceedings of the National Academy of Sciences of the United States of America.

[10]  J. Gastwirth,et al.  WHERE IS THE FISHER INFORMATION IN AN ORDERED SAMPLE , 2000 .

[11]  Narayanaswamy Balakrishnan,et al.  Optimal Progressive Censoring Plans for the Weibull Distribution , 2004, Technometrics.

[12]  Sangun Park,et al.  On the Fisher Information in Multiply Censored and Progressively Censored Data , 2004 .

[13]  Sangun Park,et al.  Fisher Information in Order Statistics , 1996 .

[14]  Narayanaswamy Balakrishnan,et al.  Estimation of parameters from progressively censored data using EM algorithm , 2002 .

[15]  N. Balakrishnan,et al.  Progressive Censoring: Theory, Methods, and Applications , 2000 .

[16]  A. Cohen,et al.  Progressively Censored Samples in Life Testing , 1963 .

[17]  H. Nagaraja Tukey's linear sensitivity and order statistics , 1994 .

[18]  Narayanaswamy Balakrishnan,et al.  CRC Handbook of Tables for the Use of Order Statistics in Estimation , 1996 .

[19]  Nancy R. Mann,et al.  Best Linear Invariant Estimation for Weibull Parameters Under Progressive Censoring , 1971 .

[20]  N. Balakrishnan,et al.  Ch. 14. Point and interval estimation for parameters of the logistic distribution based on progressively type-II censored samples , 2001 .