CONSTRAINING MASS RATIO AND EXTINCTION IN THE FU ORIONIS BINARY SYSTEM WITH INFRARED INTEGRAL FIELD SPECTROSCOPY

We report low-resolution near-infrared spectroscopic observations of the eruptive star FU Orionis using the Integral Field Spectrograph (IFS) Project 1640 installed at the Palomar Hale telescope. This work focuses on elucidating the nature of the faint source, located 0".5 south of FU Ori, and identified in 2003 as FU Ori S. We first use our observations in conjunction with published data to demonstrate that the two stars are indeed physically associated and form a true binary pair. We then proceed to extract J- and H-band spectro-photometry using the damped LOCI algorithm, a reduction method tailored for high contrast science with IFS. This is the first communication reporting the high accuracy of this technique, pioneered by the Project 1640 team, on a faint astronomical source. We use our low-resolution near-infrared spectrum in conjunction with 10.2 μm interferometric data to constrain the infrared excess of FU Ori S. We then focus on estimating the bulk physical properties of FU Ori S. Our models lead to estimates of an object heavily reddened, A_V = 8-12, with an effective temperature of ~4000-6500 K. Finally, we put these results in the context of the FU Ori N-S system and argue that our analysis provides evidence that FU Ori S might be the more massive component of this binary system.

[1]  G. Herbig On the interpretation of FU orionis , 1966 .

[2]  A. Landolt PHOTOMETRY OF V1057 CYGNI AND NEIGHBORING STARS. , 1975 .

[3]  George H. Herbig,et al.  Eruptive phenomena in early stellar evolution. , 1977 .

[4]  P. Murdin,et al.  The Lambda Orionis association , 1977 .

[5]  A. Landolt PHOTOMETRY OF THE FU ORIONIS STARS V1057 CYGNI AND V1515 CYGNI. , 1977 .

[6]  Scott J. Kenyon,et al.  Accretion disk models for FU orionis and V1057 Cygni: detailed comparisons between observations and theory , 1988 .

[7]  L. Hartmann,et al.  The dusty envelopes of FU Orionis variables , 1991 .

[8]  I. Bonnell,et al.  A binary origin for FU Orionis stars , 1992 .

[9]  L. Hartmann,et al.  RNO 1B/1C: a double FU Orionis system , 1993 .

[10]  Low-mass companions to T Tauri stars: a mechanism for rapid-rise FU Orionis outbursts , 1995, astro-ph/9511030.

[11]  L. Hartmann,et al.  The FU Orionis Phenomenon , 1996 .

[12]  C. Lada,et al.  Near-Infrared Spectra and the Evolutionary Status of Young Stellar Objects: Results of a 1.1-2.4 (??) Survey , 1996 .

[13]  D. Lin,et al.  The Structure of the Boundary Layer in Protostellar Disks , 1996 .

[14]  Harold A. McAlister,et al.  Differential Binary Star Photometry Using the Adaptive Optics System at Starfire Optical Range , 1996 .

[15]  D. Wilner,et al.  Compact protoplanetary disks around the stars of a young binary system , 1998, Nature.

[16]  L. Roberts,et al.  Binary Star Differential Photometry Using the Adaptive Optics System at Mount Wilson Observatory , 2000 .

[17]  David R. Alexander,et al.  THE LIMITING EFFECTS OF DUST IN BROWN DWARF MODEL ATMOSPHERES , 2001 .

[18]  L. Helmer,et al.  The Carlsberg Meridian Telescope CCD drift scan survey , 2002, astro-ph/0209184.

[19]  H. Ford,et al.  Imaging Spectroscopy for Extrasolar Planet Detection , 2002, astro-ph/0209078.

[20]  C. Aspin,et al.  Two Embedded Young Stellar Objects in NGC 2264 with FU Orionis Characteristics , 2003 .

[21]  High-Resolution Spectroscopy of FU Orionis Stars , 2003, astro-ph/0306559.

[22]  C. Aspin,et al.  The FU Orionis Binary System and the Formation of Close Binaries , 2004 .

[23]  John T. Rayner,et al.  Spextool: A Spectral Extraction Package for SpeX, a 0.8–5.5 Micron Cross‐Dispersed Spectrograph , 2004 .

[24]  FU Orionis: A Binary Star? , 2003, astro-ph/0311606.

[25]  Cambridge,et al.  The photometric evolution of FU Orionis objects: disc instability and wind—envelope interaction , 2005 .

[26]  J. Donati,et al.  Direct detection of a magnetic field in the innermost regions of an accretion disk , 2005, Nature.

[27]  G. Vasisht,et al.  Keck interferometer observations of FU Orionis objects , 2005 .

[28]  Benjamin F. Lane,et al.  New insights on the AU-scale circumstellar structure of FU Orionis , 2005 .

[29]  Richard Dekany,et al.  PALM-3000: visible light AO on the 5.1-meter Telescope , 2006, SPIE Astronomical Telescopes + Instrumentation.

[30]  Christof Iserlohe,et al.  First High-Contrast Science with an Integral Field Spectrograph: The Substellar Companion to GQ Lupi , 2006 .

[31]  THE UNUSUAL X-RAY SPECTRUM OF FU ORIONIS , 2006, astro-ph/0603378.

[32]  U. Michigan,et al.  The Hot Inner Disk of FU Orionis , 2007, 0707.3429.

[33]  A. Vittone,et al.  Ultraviolet spectrum of FU Ori and a “Compromise” model of the FUor , 2007 .

[34]  Etienne Artigau,et al.  A New Algorithm for Point-Spread Function Subtraction in High-Contrast Imaging: A Demonstration with Angular Differential Imaging , 2007, astro-ph/0702697.

[35]  S. Pfalzner Encounter-driven accretion in young stellar clusters – A connection to FUors? , 2008, 0810.2854.

[36]  Independent estimate of the interstellar extinction toward FU Ori , 2008 .

[37]  C. Aime,et al.  APODIZED PUPIL LYOT CORONAGRAPHS FOR ARBITRARY APERTURES. II. THEORETICAL PROPERTIES AND APPLICATION TO EXTREMELY LARGE TELESCOPES , 2009 .

[38]  Randall D. Bartos,et al.  The Gemini Planet Imager calibration testbed , 2009, Optical Engineering + Applications.

[39]  M. D. Perrin,et al.  MID-INFRARED SIZE SURVEY OF YOUNG STELLAR OBJECTS: DESCRIPTION OF KECK SEGMENT-TILTING EXPERIMENT AND BASIC RESULTS , 2009, 0905.3495.

[40]  K. Briggs,et al.  CHANDRA REVEALS VARIABLE MULTI-COMPONENT X-RAY EMISSION FROM FU ORIONIS , 2010, 1008.4090.

[41]  Institute for Astronomy,et al.  Stellar encounters in the context of outburst phenomena , 2009, 0911.0531.

[42]  Gautam Vasisht,et al.  SPECKLE SUPPRESSION WITH THE PROJECT 1640 INTEGRAL FIELD SPECTROGRAPH , 2010, 1012.4016.

[43]  Jennifer E. Roberts,et al.  DISCOVERY AND CHARACTERIZATION OF A FAINT STELLAR COMPANION TO THE A3V STAR ζ VIRGINIS , 2010, 1002.1074.

[44]  Jr.,et al.  A New High Contrast Imaging Program at Palomar Observatory , 2010, 1012.0008.

[45]  Zhaohuan Zhu,et al.  LONG-TERM EVOLUTION OF PROTOSTELLAR AND PROTOPLANETARY DISKS. I. OUTBURSTS , 2010, 1003.1759.

[46]  L. A. Hillenbrand,et al.  RESOLVING THE SUB-AU-SCALE GAS AND DUST DISTRIBUTION IN FU ORIONIS SOURCES , 2011, 1106.1440.

[47]  Ian R. Parry,et al.  A Data-Cube Extraction Pipeline for a Coronagraphic Integral Field Spectrograph , 2011, 1104.5233.

[48]  Frantz Martinache,et al.  ESTABLISHING α Oph AS A PROTOTYPE ROTATOR: IMPROVED ASTROMETRIC ORBIT , 2010, 1010.4028.

[49]  Zhaohuan Zhu,et al.  On Rapid Disk Accretion and Initial Conditions in Protostellar Evolution , 2011, 1106.3343.

[50]  C. Aspin,et al.  THE NATURE AND EVOLUTIONARY STATE OF THE FU ORIONIS BINARY SYSTEM , 2012 .

[51]  Jennifer E. Roberts,et al.  APPLICATION OF A DAMPED LOCALLY OPTIMIZED COMBINATION OF IMAGES METHOD TO THE SPECTRAL CHARACTERIZATION OF FAINT COMPANIONS USING AN INTEGRAL FIELD SPECTROGRAPH , 2011, 1111.6102.