Hausdorff dimension of the boundary of bubbles of additive Brownian motion and of the Brownian sheet

We first consider the additive Brownian motion process $(X(s_1,s_2),\ (s_1,s_2) \in \mathbb{R}^2)$ defined by $X(s_1,s_2) = Z_1(s_1) - Z_2 (s_2)$, where $Z_1$ and $Z_2 $ are two independent (two-sided) Brownian motions. We show that with probability one, the Hausdorff dimension of the boundary of any connected component of the random set $\{(s_1,s_2)\in \mathbb{R}^2: X(s_1,s_2) >0\}$ is equal to $$ \frac{1}{4}\left(1 + \sqrt{13 + 4 \sqrt{5}}\right) \simeq 1.421\, . $$ Then the same result is shown to hold when $X$ is replaced by a standard Brownian sheet indexed by the nonnegative quadrant.

[1]  T. Mountford Estimates of the Hausdorff dimension of the boundary of positive Brownian sheet components , 1993 .

[2]  M. Yor,et al.  Continuous martingales and Brownian motion , 1990 .

[3]  S. Pfeifer The Geometry Of Fractal Sets , 2016 .

[4]  T. Mountford,et al.  Points of increase of the Brownian sheet , 1997 .

[5]  Q. Shao,et al.  Gaussian processes: Inequalities, small ball probabilities and applications , 2001 .

[6]  W. Ehm Sample function properties of multi-parameter stable processes , 1981 .

[7]  Nondifferentiability of curves on the Brownian sheet , 1996 .

[8]  Ioannis Karatzas,et al.  Brownian Motion and Stochastic Calculus , 1987 .

[9]  N. S. Landkof Foundations of Modern Potential Theory , 1972 .

[10]  Julien Dubédat SLE and the free field: partition functions and couplings , 2007, 0712.3018.

[11]  T. Mountford Quasi-everywhere upper functions , 1992 .

[12]  D. Khoshnevisan,et al.  Brownian Sheet and Capacity , 1999 .

[13]  T. Mountford,et al.  Level sets, bubbles and excursions of a Brownian sheet , 2000 .

[14]  O. Schramm,et al.  Contour lines of the two-dimensional discrete Gaussian free field , 2006, math/0605337.

[15]  T. Mountford,et al.  Jordan curves in the level sets of additive Brownian motion , 2001 .

[16]  O. Schramm,et al.  A contour line of the continuum Gaussian free field , 2010, 1008.2447.

[17]  S. Taylor DIFFUSION PROCESSES AND THEIR SAMPLE PATHS , 1967 .

[18]  T. Mountford,et al.  Non-independence of excursions of the Brownian sheet and of additive Brownian motion , 2002 .

[19]  Davar Khoshnevisan,et al.  Multiparameter Processes: An Introduction to Random Fields , 2002 .

[20]  R. Adler,et al.  Random Fields and Geometry , 2007 .

[21]  J. B. Walsh,et al.  The structure of a Brownian bubble , 1993 .

[22]  T. Mountford,et al.  Eccentric behaviors of the Brownian sheet along lines , 2002 .

[23]  Robert C. Dalang,et al.  Level sets and excursions of the Brownian sheet , 2003 .

[24]  W. Kendall Contours of Brownian processes with several-dimensional times , 1980 .

[25]  Robert J. Adler,et al.  THE UNIFORM DIMENSION OF THE LEVEL SETS OF A BROWNIAN SHEET , 1978 .

[26]  J. Hawkes SOME RANDOM SERIES OF FUNCTIONS second edition (Cambridge Studies in Advanced Mathematics 5) , 1988 .

[27]  R. Dalang,et al.  Geography of the level sets of the Brownian sheet , 1993 .

[28]  P. Meyer Theorie elementaire des processus a deux indices , 1981 .

[29]  J. Azaïs,et al.  Level Sets and Extrema of Random Processes and Fields , 2009 .

[30]  G. Pete Corner percolation on ℤ2 and the square root of 17 , 2005, math/0507457.

[31]  Stig Larsson,et al.  Introduction to stochastic partial differential equations , 2008 .

[32]  R. Dalang,et al.  TIME-REVERSAL IN HYPERBOLIC S.P.D.E.'S , 2002 .

[33]  Vincent Beffara The dimension of the SLE curves , 2008 .

[34]  Steven Orey,et al.  Sample Functions of the $N$-Parameter Wiener Process , 1973 .