Modified correlation entropy estimation for a noisy chaotic time series.

A method of estimating the Kolmogorov-Sinai (KS) entropy, herein referred to as the modified correlation entropy, is presented. The method can be applied to both noise-free and noisy chaotic time series. It has been applied to some clean and noisy data sets and the numerical results show that the modified correlation entropy is closer to the KS entropy of the nonlinear system calculated by the Lyapunov spectrum than the general correlation entropy. Moreover, the modified correlation entropy is more robust to noise than the correlation entropy.

[1]  Cees Diks Nonlinear time series analysis , 1999 .

[2]  Haye Hinrichsen,et al.  Entropy estimates of small data sets , 2008, 0804.4561.

[3]  Holger Kantz,et al.  Enlarged scaling ranges for the KS-entropy and the information dimension. , 1996, Chaos.

[4]  A. Jayawardena,et al.  Noise reduction and prediction of hydrometeorological time series: dynamical systems approach vs. stochastic approach , 2000 .

[5]  Brown,et al.  Computing the Lyapunov spectrum of a dynamical system from an observed time series. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[6]  M. Kaltenhäuser,et al.  Improvement of K 2 -entropy calculations by means of dimension scaled distances , 1993 .

[7]  P. Grassberger,et al.  Estimation of the Kolmogorov entropy from a chaotic signal , 1983 .

[8]  Roy L. Adler,et al.  Topological entropy , 2008, Scholarpedia.

[9]  Y. Pesin CHARACTERISTIC LYAPUNOV EXPONENTS AND SMOOTH ERGODIC THEORY , 1977 .

[10]  C. Diks Nonlinear time series analysis , 1999 .

[11]  P. Xu,et al.  Neighbourhood selection for local modelling and prediction of hydrological time series , 2002 .

[12]  James B. Ramsey,et al.  The statistical properties of dimension calculations using small data sets , 1990 .

[13]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[14]  Peter J.T. Verheijen,et al.  Influence of noise on power-law scaling functions and an algorithm for dimension estimations , 1997 .

[15]  O. Rössler An equation for continuous chaos , 1976 .

[16]  Alfréd Rényi,et al.  Probability Theory , 1970 .

[17]  P. Grassberger,et al.  A simple noise-reduction method for real data , 1991 .

[18]  F. Takens Detecting strange attractors in turbulence , 1981 .

[19]  Peter Grassberger,et al.  Entropy estimation of symbol sequences. , 1996, Chaos.

[20]  H. Kantz,et al.  Nonlinear time series analysis , 1997 .

[21]  P. Grassberger,et al.  On noise reduction methods for chaotic data. , 1993, Chaos.

[22]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[23]  Pengcheng Xu,et al.  A method of estimating the noise level in a chaotic time series. , 2008, Chaos.

[24]  Claude E. Shannon,et al.  A mathematical theory of communication , 1948, MOCO.