Time-Varying Procedures for Insulin-Dependent Diabetes Mellitus Control

This work considers the problem of automatically controlling the glucose level in insulin dependent diabetes mellitus (IDDM) patients. The objective is to include several important and practical issues in the design: model uncertainty, time variations, nonlinearities, measurement noise, actuator delay and saturation, and real time implementation. These are fundamental issues to be solved in a device implementing this control. Two time-varying control procedures have been proposed which take into consideration all of them: linear parameter varying (LPV) and unfalsified control (UC). The controllers are implemented with low-order dynamics that adapt continuously according to the glucose levels measured in real time in one case (LPV) and by controller switching based on the actual performance in the other case (UC). Both controllers have performed adequately under all these practical restrictions, and a discussion on pros and cons of each method is presented at the end.

[1]  María Malfaz,et al.  Toma de Decisiones en Robótica , 2010 .

[2]  J. Doyle,et al.  Robust and optimal control , 1995, Proceedings of 35th IEEE Conference on Decision and Control.

[3]  Fernando Daniel Bianchi,et al.  Interpolation for gain-scheduled control with guarantees , 2011, Autom..

[4]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[5]  Balázs Benyó,et al.  Past and present of automatic glucose-insulin control research at BME , 2009 .

[6]  Carsten W. Scherer,et al.  LPV control and full block multipliers , 2001, Autom..

[7]  A. Stephen Morse,et al.  Control Using Logic-Based Switching , 1997 .

[8]  A. Packard,et al.  Robust performance of linear parametrically varying systems using parametrically-dependent linear feedback , 1994 .

[9]  Yang Kuang,et al.  Mathematical models and software tools for the glucose-insulin regulatory system and diabetes: an overview , 2006 .

[10]  M. Morari,et al.  Closed-Loop Control of Blood Glucose , 2007 .

[11]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[12]  K. Popper,et al.  Conjectures and refutations;: The growth of scientific knowledge , 1972 .

[13]  Michael G. Safonov,et al.  Automatic PID tuning: an application of unfalsified control , 1999, Proceedings of the 1999 IEEE International Symposium on Computer Aided Control System Design (Cat. No.99TH8404).

[14]  K. Popper,et al.  Conjectures and refutations;: The growth of scientific knowledge , 1972 .

[15]  Kim-Chuan Toh,et al.  SDPT3 — a Matlab software package for semidefinite-quadratic-linear programming, version 3.0 , 2001 .

[16]  Mario Sznaier,et al.  Robust Systems Theory and Applications , 1998 .

[17]  John Thomas Sorensen,et al.  A physiologic model of glucose metabolism in man and its use to design and assess improved insulin therapies for diabetes , 1985 .

[18]  P. Gahinet,et al.  A linear matrix inequality approach to H∞ control , 1994 .

[19]  I. Postlethwaite,et al.  Linear Matrix Inequalities in Control , 2007 .

[20]  A. S. Ghersin,et al.  LPV control of glucose for Diabetes type I , 2010, 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology.

[21]  M. Athans,et al.  Gain Scheduling: Potential Hazards and Possible Remedies , 1992, 1991 American Control Conference.

[22]  Lutz Heinemann,et al.  Non-invasive glucose monitoring in patients with Type 1 diabetes: a Multisensor system combining sensors for dielectric and optical characterisation of skin. , 2009, Biosensors & bioelectronics.

[23]  Francis J. Doyle,et al.  Robust H∞ glucose control in diabetes using a physiological model , 2000 .

[24]  F. Bianchi,et al.  Robust identification / invalidation in an LPV framework , 2010 .

[25]  Ricardo Femat,et al.  Blood glucose control for type I diabetes mellitus: A robust tracking H∞ problem , 2004 .

[26]  Ricardo Salvador Sánchez Peña,et al.  LPV control of a 6-DOF vehicle , 2002, IEEE Trans. Control. Syst. Technol..

[27]  M.G. Safonov,et al.  Unfalsified direct adaptive control of a two-link robot arm , 1999, Proceedings of the 1999 IEEE International Conference on Control Applications (Cat. No.99CH36328).

[28]  Z. Benyo,et al.  LPV fault detection of glucose-insulin system , 2006, 2006 14th Mediterranean Conference on Control and Automation.

[29]  Jozsef Bokor,et al.  Model-based nonlinear optimal blood glucose control of Type I diabetes patients , 2008, 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[30]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[31]  G. Dullerud,et al.  A Course in Robust Control Theory: A Convex Approach , 2005 .

[32]  Efstratios N. Pistikopoulos,et al.  Model-based blood glucose control for type 1 diabetes via parametric programming , 2006, IEEE Transactions on Biomedical Engineering.

[33]  A. Packard Gain scheduling via linear fractional transformations , 1994 .

[34]  S. Genuth,et al.  The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. , 1993, The New England journal of medicine.

[35]  Carlos Eduardo Ferrante do Amaral,et al.  Current development in non-invasive glucose monitoring. , 2008, Medical engineering & physics.

[36]  Levente Kovács,et al.  Induced L2-norm minimization of glucose-insulin system for Type I diabetic patients , 2011, Comput. Methods Programs Biomed..

[37]  Ari Ingimundarson,et al.  Using the Unfalsified Control Concept to achieve Fault Tolerance , 2008 .

[38]  Michael G. Safonov,et al.  The unfalsified control concept and learning , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[39]  J. Bondia,et al.  El Páncreas Artificial, Control Automático de Infusión de Insulina en Diabetes Mellitus Tipo 1 , 2010 .