Time and the Kalman Filter

This article reviews applications of the Kalman filter to atomic timing. The objectives of the article are twofold - present diverse applications and concepts in a consistent fashion, both in regard to notation and mathematical concepts. and develop the key ideas in a tutorial form by introducing the basic concepts and then applications.we apply the Kalman filter to clock estimation, clock monitoring, and time-scale definition. Furthermore, the GPS composite clock algorithm along with numerical simulations is described. Finally, the advantages and criticalities of the application of the Kalman filter to atomic timing, highlighting issues that are worth investigating are pointed out and on which the time and frequency community is currently working.

[1]  David A. Howe,et al.  Total Hadamard Variance: Application to Clock Steering by Kalman Filtering , 2001 .

[2]  Kevin J. Madders,et al.  EUROPEAN SPACE AGENCY , 1983 .

[3]  A J Van Dierendonck,et al.  Relationship between Allan variances and Kalman Filter parameters , 1984 .

[4]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[5]  D. Orgiazzi,et al.  Using Precise Point Positioning for Clock Comparisons , 2006 .

[6]  R. E. Kalman,et al.  New Results in Linear Filtering and Prediction Theory , 1961 .

[7]  Jorma Rissanen Optimal Estimation , 2011, ALT.

[8]  D. W. Allan,et al.  Time and Frequency (Time-Domain) Characterization, Estimation, and Prediction of Precision Clocks and Oscillators , 1987, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[9]  Peter V. Tryon,et al.  Continuous time series models for unequally spaced data applied to modeling atomic clocks , 1987 .

[10]  Marcello Farina,et al.  Steering a time scale by the application of the theory of control , 2005 .

[11]  J. A. Davis,et al.  A Kalman Filter Clock Algorithm for Use in the Presence of Flicker Frequency Modulation Noise , 2003 .

[12]  Charles A Greenhall Kalman Plus Weights: A Time Scale Algorithm , 2001 .

[13]  P. Koppang,et al.  Linear quadratic stochastic control of atomic hydrogen masers , 1999, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[14]  S. R. Stein,et al.  REPORT ON THE TIMESCALE ALGORITHM TEST BED AT USNO , 1989 .

[15]  Bruno O. Shubert,et al.  Random variables and stochastic processes , 1979 .

[16]  Pierre Héroux,et al.  Precise Point Positioning Using IGS Orbit and Clock Products , 2001, GPS Solutions.

[17]  P. Tavella,et al.  Implementation of the dynamic Allan variance for the Galileo System Test Bed V2 , 2007, 2007 IEEE International Frequency Control Symposium Joint with the 21st European Frequency and Time Forum.

[18]  Arthur Gelb,et al.  Applied Optimal Estimation , 1974 .

[19]  Patrizia Tavella,et al.  A mathematical model for the atomic clock error in case of jumps , 2003, 1506.01080.

[20]  Steven T. Hutsell Fine tuning GPS clock estimation in the MCS , 1994 .

[21]  S. R. Stein Advances in time-scale algorithms , 1993 .

[22]  Patrizia Tavella,et al.  Comparative Study of Time Scale Algorithms , 1991 .

[23]  Patrizia Tavella,et al.  Statistical Constraints on Station Clock Parameters in the NRCAN PPP Estimation Process , 2008 .

[24]  R. G. Brown,et al.  Assessing the Validity of Suboptimal 2-State Clock Models , 1986 .

[25]  S. R. Stein Kalman filter analysis of precision clocks with real-time parameter estimation , 1989, Proceedings of the 43rd Annual Symposium on Frequency Control.

[26]  Mihran Miranian,et al.  An Ensemble of Ultra-Stable Quartz Oscillators to Improve Spacecraft Onboard Frequency Stability , 2006 .

[27]  R. J. Douglas,et al.  Time scale algorithms for an inhomogeneous group of atomic clocks , 1993 .

[28]  Charles A Greenhall,et al.  Forming stable timescales from the Jones-Tryon Kalman filter , 2003 .

[29]  Fan-Ren Chang,et al.  Highly accurate real-time GPS carrier phase-disciplined oscillator , 2004, IEEE Transactions on Instrumentation and Measurement.

[30]  Helmut Hellwig,et al.  An Accuracy Algorithm for an Atomic Time Scale , 1975 .

[31]  D. W. Allan,et al.  Statistics of atomic frequency standards , 1966 .

[32]  Peter V Tryon,et al.  Estimating Time From Atomic Clocks. , 1983, Journal of research of the National Bureau of Standards.

[33]  D. Orgiazzi,et al.  First evaluation of a rapid time transfer within the IGS global real-time network , 2005, Proceedings of the 2005 IEEE International Frequency Control Symposium and Exposition, 2005..

[34]  W. J. Klepczynski,et al.  GPS: primary tool for time transfer , 1999, Proc. IEEE.

[35]  M. S. Keshner 1/f noise , 1982, Proceedings of the IEEE.

[36]  P. Kartaschoff,et al.  Frequency and time , 1978 .

[37]  J. Oaks,et al.  NRL analysis of GPS on-orbit clocks , 2005, Proceedings of the 2005 IEEE International Frequency Control Symposium and Exposition, 2005..

[38]  D. Kirchner,et al.  Two-way time transfer via communication satellites , 1991, Proc. IEEE.

[39]  K. Senior,et al.  Developing an IGS time scale , 2001, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[40]  Claudine Thomas Real-time Restitution of GPS Time Through a Kalman Estimation , 1993 .

[41]  Charles A Greenhall A Kalman filter clock ensemble algorithm that admits measurement noise , 2006 .

[42]  J. Vanier,et al.  The quantum physics of atomic frequency standards , 1989 .

[43]  M. A. Weiss,et al.  A study of the NBS time scale algorithm , 1989 .

[44]  T. Weissert,et al.  AT2, a new time scale algorithm : AT1 plus frequency variance , 1991 .

[45]  N. G. Basov,et al.  Optical frequency standards , 1967 .

[46]  Patrizia Tavella,et al.  Time Scale Algorithm: Definition of Ensemble Time and Possible Uses of the Kalman Filter , 1990 .

[47]  C. Audoin,et al.  Stochastic models of stable frequency and time sources and their relationship , 1993 .

[48]  L. Galleani A tutorial on the two-state model of the atomic clock noise , 2008 .

[49]  C. T. Leondes,et al.  Ensembling clocks of Global Positioning System , 1990 .

[50]  Steven Hutsell Recent MCS Improvements to GPS Timing , 1994 .

[51]  Andrew N. Novick,et al.  Time and Frequency Measurements Using the Global Positioning System , 2001 .

[52]  K. Brown The Theory of the GPS Composite Clock , 1991 .

[53]  J. W. Chaffee Observability, ensemble averaging and GPS time , 1992 .

[54]  Bradford W. Parkinson,et al.  Global positioning system : theory and applications , 1996 .

[55]  D. W. Allan,et al.  Characterization, Optimum Estimation, and Time Prediction of Precision Clocks , 1985 .

[56]  S. R. Stein,et al.  Kalman filter analysis for real time applications of clocks and oscillators , 1988, Proceedings of the 42nd Annual Frequency Control Symposium, 1988..

[57]  P. Tavella,et al.  The clock model and its relationship with the Allan and related variances , 2005, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[58]  P. Tavella,et al.  The dynamic Allan variance , 2009, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[59]  Andrew N. Novick,et al.  Time and Frequency Measurements Using the Global Positioning System (GPS) , 2001 .

[60]  Robert A. Nelson,et al.  The Physical Basis of the Leap Second , 2008 .

[61]  P. Tavella,et al.  On the use of the Kalman filter in timescales , 2003 .

[62]  Věnceslav F. Kroupa Frequency stability : fundamentals & measurement , 1983 .

[63]  Lorenzo Galleani,et al.  Detection of Anomalies in the Behavior of Atomic Clocks , 2007, IEEE Transactions on Instrumentation and Measurement.

[64]  John G. Proakis,et al.  Probability, random variables and stochastic processes , 1985, IEEE Trans. Acoust. Speech Signal Process..