Large tunable lateral shift in prism coupling system containing a superconducting slab

[1]  A. Mir,et al.  Graphene Sensor Based on Surface Plasmon Resonance for Optical Scanning , 2019, IEEE Photonics Technology Letters.

[2]  A. Farmani Three-dimensional FDTD analysis of a nanostructured plasmonic sensor in the near-infrared range , 2019, Journal of the Optical Society of America B.

[3]  Jing Zhang,et al.  Large Tunable Lateral Shift from Guided Wave Surface Plasmon Resonance , 2019, Plasmonics.

[4]  S. F. Shaukat,et al.  Nanoscale, tunable, and highly sensitive biosensor utilizing hyperbolic metamaterials in the near-infrared range. , 2018, Applied optics.

[5]  A. Mir,et al.  Broadly tunable and bidirectional terahertz graphene plasmonic switch based on enhanced Goos-Hänchen effect , 2018, Applied Surface Science.

[6]  Wenyi Ren,et al.  Large tunable negative lateral shift from graphene-based hyperbolic metamaterials backed by a dielectric , 2018, Superlattices and Microstructures.

[7]  Yuanjiang Xiang,et al.  Tunable enhanced Goos–Hänchen shift of light beam reflected from graphene-based hyperbolic metamaterials , 2018 .

[8]  Ali Farmani,et al.  Design of a High Extinction Ratio Tunable Graphene on White Graphene Polarizer , 2018, IEEE Photonics Technology Letters.

[9]  M. Sheikhi,et al.  Tunable resonant Goos–Hänchen and Imbert–Fedorov shifts in total reflection of terahertz beams from graphene plasmonic metasurfaces , 2017 .

[10]  M. Sheikhi,et al.  Analytical modeling of highly tunable giant lateral shift in total reflection of light beams from a graphene containing structure , 2017 .

[11]  Ziauddin,et al.  Control of Goos–Hänchen shift via input probe field intensity , 2016 .

[12]  Y. P. Lee,et al.  Goos-Hanchen shift at the reflection of light from the complex structures composed of superconducting and dielectric layers , 2015, 1903.01938.

[13]  M. Dressel,et al.  Piston pressure cell for low-temperature infrared investigations. , 2015, The Review of scientific instruments.

[14]  Rong Chen,et al.  Giant and tunable Goos–Hanchen shifts for attenuated total reflection structure containing graphene , 2014 .

[15]  M. Aspelmeyer,et al.  Silicon optomechanical crystal resonator at millikelvin temperatures , 2014 .

[16]  Y. P. Lee,et al.  Effect of lateral shift of the light transmitted through a one-dimensional superconducting photonic crystal , 2013 .

[17]  S. Wen,et al.  Electrically controlled Goos-Hänchen shift of a light beam reflected from the metal-insulator-semiconductor structure. , 2013, Optics express.

[18]  X. Dai,et al.  Large and negative Goos–Hänchen shift with magneto-controllability based on a ferrofluid , 2013 .

[19]  Yu Song,et al.  Giant Goos-Hänchen shift in graphene double-barrier structures , 2012, 1208.2395.

[20]  Weijing Kong,et al.  Nearly three orders of magnitude enhancement of Goos-Hanchen shift by exciting Bloch surface wave. , 2012, Optics express.

[21]  G. Sui,et al.  Large positive and negative lateral optical beam shift due to long-range surface plasmon resonance , 2011 .

[22]  Z. Zhou,et al.  Electric control of enhanced lateral shift owing to surface plasmon resonance in Kretschmann configuration with an electro-optic crystal , 2010 .

[23]  Lei Gao,et al.  Temperature-dependent Goos-Hänchen shift on the interface of metal/dielectric composites. , 2009, Optics express.

[24]  J. P. Woerdman,et al.  Observing angular deviations in the specular reflection of a light beam , 2009 .

[25]  Z. Cao,et al.  Electric control of spatial beam position based on the Goos–Hänchen effect , 2008 .

[26]  Xi Chen,et al.  Giant bistable lateral shift owing to surface-plasmon excitation in Kretschmann configuration with a Kerr nonlinear dielectric. , 2008, Optics letters.

[27]  Y. Genenko,et al.  The effect of a superconducting surface layer on the optical properties of a dielectric photonic composite , 2008 .

[28]  J. P. Woerdman,et al.  Observation of Goos-Hänchen shifts in metallic reflection. , 2007, Optics express.

[29]  H. Chiang,et al.  Large negative Goos-Hanchen shift at metal surfaces , 2007 .

[30]  S. Wen,et al.  Negative and positive Goos–Hänchen shifts of a light beam transmitted from an indefinite medium slab , 2007 .

[31]  Pengfei Zhu,et al.  Large positive and negative lateral optical beam shift in prism-waveguide coupling system. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[32]  Shi-Yao Zhu,et al.  Large negative Goos-Hänchen shift from a weakly absorbing dielectric slab. , 2005, Optics letters.

[33]  M. Porras Moment-method evaluation of the angular and lateral shifts of reflected light beams , 1996 .

[34]  H. Sasada,et al.  Measurements of transverse lateral and longitudinal angular shifts of high-azimuthal-mode Laguerre–Gaussian beams reflected at a dielectric interface near critical incidence , 2013 .

[35]  Jin Au Kong,et al.  Reflection Coefficients and Goos-Hanchen Shifts in Anisotropic and Bianisotropic Left-Handed Metamaterials , 2005 .

[36]  K. Artmann Berechnung der Seitenversetzung des totalreflektierten Strahles , 1948 .

[37]  F. Goos,et al.  Ein neuer und fundamentaler Versuch zur Totalreflexion , 1947 .