Analysis of Error in Depth Perception with Vergence and Spatially Varying Sensing

In stereo vision the depth of a 3-D point is estimated based on the position of its projections on the left and right images. The image plane of cameras that produces the images consists of discrete pixels. This discretization of images generates uncertainty in estimation of the depth at each 3-D point. In this paper, we investigate the effect of vergence and spatially varying resolution on the depth estimation error. First, vergence is studied when pairs of stereo images with uniform resolution are used. Then the problem is studied for a stereo system similar to that of humans, in which cameras have high resolution in the center and nonlinearly decreasing resolution toward the periphery. In this paper we are only concerned with error in depth perception, assuming that stereo matching is already done.

[1]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  Anup Basu Optimal discretization for stereo reconstruction , 1992, Pattern Recognit. Lett..

[3]  Jake K. Aggarwal,et al.  Structure from stereo-a review , 1989, IEEE Trans. Syst. Man Cybern..

[4]  H. Baird Model-Based Image Matching Using Location , 1985 .

[5]  Hans P. Moravec Towards Automatic Visual Obstacle Avoidance , 1977, IJCAI.

[6]  Larry S. Davis,et al.  A survey of edge detection techniques , 1975 .

[7]  W E Grimson,et al.  A computer implementation of a theory of human stereo vision. , 1981, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[8]  Giulio Sandini,et al.  An anthropomorphic retina-like structure for scene analysis , 1980 .

[9]  Ramakant Nevatia,et al.  Segment-based stereo matching , 1985, Comput. Vis. Graph. Image Process..

[10]  Narendra Ahuja,et al.  Surfaces from Stereo: Integrating Feature Matching, Disparity Estimation, and Contour Detection , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Anup Basu,et al.  Modeling fish-eye lenses , 1993, Proceedings of 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '93).

[12]  T. Poggio,et al.  A computational theory of human stereo vision , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[13]  Thomas J. Olson,et al.  Real-Time Vergence Control for Binocular Robots Accesion For , .

[14]  Marsha Jo Hannah,et al.  Bootstrap Stereo , 1980, AAAI.

[15]  Andrea Califano,et al.  Data and model driven foveation , 1990, [1990] Proceedings. 10th International Conference on Pattern Recognition.

[16]  John K. Tsotsos,et al.  The horoptor and active cyclotorsion , 1994, Proceedings of 12th International Conference on Pattern Recognition.

[17]  Larry H. Matthies,et al.  Error modeling in stereo navigation , 1986, IEEE J. Robotics Autom..

[18]  Hans P. Morevec Towards automatic visual obstacle avoidance , 1977, IJCAI 1977.

[19]  D Marr,et al.  Theory of edge detection , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[20]  Takeo Kanade,et al.  Stereo by Intra- and Inter-Scanline Search Using Dynamic Programming , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[21]  Narendra Ahuja,et al.  Matching Two Perspective Views , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  D Marr,et al.  A computational theory of human stereo vision. , 1979, Proceedings of the Royal Society of London. Series B, Biological sciences.

[23]  Rodney A. Brooks,et al.  Symbolic Reasoning Among 3-D Models and 2-D Images , 1981, Artif. Intell..

[24]  Xiaobo Li,et al.  A Framework for Variable -Resolution Vision , 1991, ICCI.