Module-oriented modeling of reactive transport with HYTEC

The paper introduces HYTEC, a coupled reactive transport code currently used for groundwater pollution studies, safety assessment of nuclear waste disposals, geochemical studies and interpretation of laboratory column experiments. Based on a known permeability field, HYTEC evaluates the groundwater flow paths, and simulates the migration of mobile matter (ions, organics, colloids) subject to geochemical reactions. The code forms part of a module-oriented structure which facilitates maintenance and improves coding flexibility. In particular, using the geochemical module CHESS as a common denominator for several reactive transport models significantly facilitates the development of new geochemical features which become automatically available to all models. A first example shows how the model can be used to assess migration of uranium from a sub-surface source under the effect of an oxidation front. The model also accounts for alteration of hydrodynamic parameters (local porosity, permeability) due to precipitation and dissolution of mineral phases, which potentially modifies the migration properties in general. The second example illustrates this feature.

[1]  Wolfgang Kinzelbach,et al.  Simulation of reactive processes related to biodegradation in aquifers: 1. Structure of the three-dimensional reactive transport model , 1998 .

[2]  J. Bear Dynamics of Fluids in Porous Media , 1975 .

[3]  M. Cranga,et al.  Numerical simulation of the interaction between granitic groundwater, engineered clay barrier and iron canister , 1999 .

[4]  C. Steefel,et al.  Approaches to modeling of reactive transport in porous media , 1996 .

[5]  Jean-François Gaillard,et al.  Biogeochemical dynamics in aquatic sediments , 1996 .

[6]  Vincent Lagneau,et al.  Influence des processus géochimiques sur le transport en milieu poreux -- application au colmatage de barrières de confinement potentielles dans un stockage en formation géologique , 2000 .

[7]  Gour-Tsyh Yeh,et al.  A Model for Simulating Transport of Reactive Multispecies Components: Model Development and Demonstration , 1991 .

[8]  Jan Van der Lee Modélisation du comportement géochimique et du transport des radionucléides en présence de colloïdes , 1997 .

[9]  Craig M. Bethke,et al.  Geochemical reaction modeling , 1996 .

[10]  A. Burnol,et al.  Intercomparison of reactive transport models applied to UO2 oxidative dissolution and uranium migration. , 2003, Journal of contaminant hydrology.

[11]  Peter C. Lichtner,et al.  Continuum formulation of multicomponent-multiphase reactive transport , 1996 .

[12]  Carl I. Steefel,et al.  Reactive transport in porous media , 1996 .

[13]  Thomas Roussel Étude expérimentale et modélisation de la propagation d'une onde de concentration alcaline issue d'une matrice cimentière à travers l'argilite du site du Laboratoire Meuse Haute-Marne , 2001 .

[14]  J. Vanbriesen,et al.  Microbiological processes in reactive modeling , 1996 .

[15]  D. K. Smith,et al.  Migration of plutonium in ground water at the Nevada Test Site , 1999, Nature.

[16]  C. Steefel,et al.  A coupled model for transport of multiple chemical species and kinetic precipitation/dissolution rea , 1994 .

[17]  Yifeng Wang,et al.  Cycling of iron and manganese in surface sediments; a general theory for the coupled transport and reaction of carbon, oxygen, nitrogen, sulfur, iron, and manganese , 1996 .

[18]  Eduardo F. D'Azevedo,et al.  HBGC123D: a high-performance computer model of coupled hydrogeological and biogeochemical processes , 2001 .

[19]  V. S. Tripathi,et al.  A critical evaluation of recent developments in hydrogeochemical transport models of reactive multichemical components , 1989 .

[20]  Laurent De Windt,et al.  Present state and future directions of modeling of geochemistry in hydrogeological systems. , 2001 .

[21]  W. O. Winsauer,et al.  Resistivity of Brine-Saturated Sands in Relation to Pore Geometry , 1952 .

[22]  T. N. Narasimhan,et al.  Redox-Controlled Multiple-Species Reactive Chemical Transport 2. Verification and Application , 1989 .

[23]  P. Toulhoat,et al.  Clay-Based Materials for Engineered Barriers : A Review , 1994 .

[24]  Janet G. Hering,et al.  Principles and Applications of Aquatic Chemistry , 1993 .

[25]  B. Travis,et al.  Transport code for radiocolloid migration: with an assessment of an actual low-level waste site , 1984 .

[26]  Carl I. Steefel,et al.  Multidimensional, multicomponent, subsurface reactive transport in nonuniform velocity fields: code verification using an advective reactive streamtube approach , 1998 .

[27]  Robert L. Street,et al.  A Groundwater Mass Transport and Equilibrium Chemistry Model for Multicomponent Systems , 1985 .

[28]  W. F. Merritt,et al.  Potential for the Rapid Transport of Plutonium In Groundwater as Demonstrated By Core Column Studies , 1981 .

[29]  J. Gaudet,et al.  Reactive transport of uranyl in a goethite column: an experimental and modelling study , 1998 .

[30]  J. McCarthy,et al.  Subsurface transport of contaminants , 1989 .

[31]  G. E. Archie The electrical resistivity log as an aid in determining some reservoir characteristics , 1942 .