Modular adjuvant-free pan-HLA-DR-immunotargeting subunit vaccine against SARS-CoV-2 elicits broad sarbecovirus-neutralizing antibody responses

[1]  A. Iwasaki,et al.  Unadjuvanted intranasal spike vaccine elicits protective mucosal immunity against sarbecoviruses , 2022, Science.

[2]  A. West,et al.  Mosaic RBD nanoparticles protect against challenge by diverse sarbecoviruses in animal models , 2022, Science.

[3]  P. Desingu,et al.  The emergence of Omicron lineages BA.4 and BA.5, and the global spreading trend , 2022, Journal of medical virology.

[4]  M. Koopmans,et al.  Antigenic cartography of SARS-CoV-2 reveals that Omicron BA.1 and BA.2 are antigenically distinct , 2022, Science Immunology.

[5]  V. Dzau,et al.  Closing the global vaccine equity gap: equitably distributed manufacturing , 2022, The Lancet.

[6]  T. Zhou,et al.  Neutralization of SARS-CoV-2 Omicron sub-lineages BA.1, BA.1.1, and BA.2 , 2022, Cell Host & Microbe.

[7]  P. Maes,et al.  Serum neutralization of SARS-CoV-2 Omicron sublineages BA.1 and BA.2 in patients receiving monoclonal antibodies , 2022, Nature Medicine.

[8]  Shinji Watanabe,et al.  Efficacy of Antiviral Agents against the SARS-CoV-2 Omicron Subvariant BA.2 , 2022, The New England journal of medicine.

[9]  D. Longo,et al.  Addressing Vaccine Inequity - Covid-19 Vaccines as a Global Public Good. , 2022, The New England journal of medicine.

[10]  Zhenhai Zhang,et al.  Development of Receptor Binding Domain (RBD)‐Conjugated Nanoparticle Vaccines with Broad Neutralization against SARS‐CoV‐2 Delta and Other Variants , 2022, Advanced science.

[11]  Liyuan Liu,et al.  Antibody evasion properties of SARS-CoV-2 Omicron sublineages , 2022, Nature.

[12]  K. Swanson,et al.  Neutralization of Omicron SARS-CoV-2 by 2 or 3 doses of BNT162b2 vaccine , 2022, bioRxiv.

[13]  K. Swanson,et al.  Neutralization of SARS-CoV-2 Omicron by BNT162b2 mRNA vaccine–elicited human sera , 2022, Science.

[14]  S. Whelan,et al.  A class II MHC-targeted vaccine elicits immunity against SARS-CoV-2 and its variants , 2021, Proceedings of the National Academy of Sciences.

[15]  Y. Bi,et al.  The self-assembled nanoparticle-based trimeric RBD mRNA vaccine elicits robust and durable protective immunity against SARS-CoV-2 in mice , 2021, Signal Transduction and Targeted Therapy.

[16]  Yong Zi Tan,et al.  Multivalency transforms SARS-CoV-2 antibodies into ultrapotent neutralizers , 2021, Nature Communications.

[17]  A. Pichlmair,et al.  A Nanoscaffolded Spike-RBD Vaccine Provides Protection against SARS-CoV-2 with Minimal Anti-Scaffold Response , 2021, Vaccines.

[18]  B. Pulendran,et al.  Emerging concepts in the science of vaccine adjuvants , 2021, Nature reviews. Drug discovery.

[19]  Pengfei Wang Natural and Synthetic Saponins as Vaccine Adjuvants , 2021, Vaccines.

[20]  G. Pantaleo,et al.  Targeting SARS-CoV-2 receptor-binding domain to cells expressing CD40 improves protection to infection in convalescent macaques , 2021, Nature Communications.

[21]  M. Nussenzweig,et al.  Mosaic nanoparticles elicit cross-reactive immune responses to zoonotic coronaviruses in mice , 2020, Science.

[22]  J. Mascola,et al.  Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine , 2020, The New England journal of medicine.

[23]  Baoying Huang,et al.  Ferritin nanoparticle-based SARS-CoV-2 RBD vaccine induces a persistent antibody response and long-term memory in mice , 2020, Cellular & Molecular Immunology.

[24]  P. Dormitzer,et al.  Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine , 2020, The New England journal of medicine.

[25]  Xin He,et al.  Nanoparticle Vaccines Based on the Receptor Binding Domain (RBD) and Heptad Repeat (HR) of SARS-CoV-2 Elicit Robust Protective Immune Responses , 2020, Immunity.

[26]  M. Nussenzweig,et al.  SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies , 2020, Nature.

[27]  D. Dimitrov,et al.  Enhanced elicitation of potent neutralizing antibodies by the SARS-CoV-2 spike receptor binding domain Fc fusion protein in mice , 2020, Vaccine.

[28]  T. Palaga,et al.  A Comparison of Intramuscular and Subcutaneous Administration of LigA Subunit Vaccine Adjuvanted with Neutral Liposomal Formulation Containing Monophosphoryl Lipid A and QS21 , 2020, Vaccines.

[29]  M. Chen,et al.  A SARS-CoV-2 surrogate virus neutralization test based on antibody-mediated blockage of ACE2–spike protein–protein interaction , 2020, Nature Biotechnology.

[30]  J. Sodroski,et al.  Potent neutralizing antibodies against multiple epitopes on SARS-CoV-2 spike , 2020, Nature.

[31]  J. Sodroski,et al.  Potent neutralizing antibodies against multiple epitopes on SARS-CoV-2 spike , 2020, Nature.

[32]  Lisa E. Gralinski,et al.  Potently neutralizing and protective human antibodies against SARS-CoV-2 , 2020, Nature.

[33]  A. Gingras,et al.  A simple protein-based surrogate neutralization assay for SARS-CoV-2 , 2020, bioRxiv.

[34]  G. Atwal,et al.  Antibody cocktail to SARS-CoV-2 spike protein prevents rapid mutational escape seen with individual antibodies , 2020, Science.

[35]  R. Welsh,et al.  Studies in humanized mice and convalescent humans yield a SARS-CoV-2 antibody cocktail , 2020, Science.

[36]  J. Bloom,et al.  Protocol and Reagents for Pseudotyping Lentiviral Particles with SARS-CoV-2 Spike Protein for Neutralization Assays , 2020, bioRxiv.

[37]  Nicholas C. Wu,et al.  A highly conserved cryptic epitope in the receptor binding domains of SARS-CoV-2 and SARS-CoV , 2020, Science.

[38]  Victor M Corman,et al.  Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR , 2020, Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin.

[39]  Zhènglì Shí,et al.  Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody , 2020, bioRxiv.

[40]  Paul Flicek,et al.  IPD-IMGT/HLA Database , 2019, Nucleic Acids Res..

[41]  A. King,et al.  Duration of Immunity and Effectiveness of Diphtheria-Tetanus-Acellular Pertussis Vaccines in Children. , 2019, JAMA pediatrics.

[42]  B. Bogen,et al.  Enhanced germinal center reaction by targeting vaccine antigen to major histocompatibility complex class II molecules , 2019, npj Vaccines.

[43]  Even Fossum,et al.  The Magnitude and IgG Subclass of Antibodies Elicited by Targeted DNA Vaccines Are Influenced by Specificity for APC Surface Molecules , 2018, ImmunoHorizons.

[44]  P. MacAry,et al.  Enhancing vaccine antibody responses by targeting Clec9A on dendritic cells , 2017, npj Vaccines.

[45]  L. Fugger,et al.  Antigen Targeting to Human HLA Class II Molecules Increases Efficacy of DNA Vaccination , 2016, The Journal of Immunology.

[46]  M. Mori,et al.  Durability of Vaccine-Induced Immunity Against Tetanus and Diphtheria Toxins: A Cross-sectional Analysis. , 2016, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[47]  N. Petrovsky Comparative Safety of Vaccine Adjuvants: A Summary of Current Evidence and Future Needs , 2015, Drug Safety.

[48]  C. Fraser,et al.  Generation of a universal CD4 memory T cell recall peptide effective in humans, mice and non-human primates. , 2014, Vaccine.

[49]  R. Toes,et al.  A molecular basis for the association of the HLA-DRB1 locus, citrullination, and rheumatoid arthritis , 2013, The Journal of experimental medicine.

[50]  Piotr Sliz,et al.  Collaboration gets the most out of software , 2013, eLife.

[51]  Sjors H.W. Scheres,et al.  RELION: Implementation of a Bayesian approach to cryo-EM structure determination , 2012, Journal of structural biology.

[52]  Yuansheng Sun,et al.  Overview of global regulatory toxicology requirements for vaccines and adjuvants. , 2012, Journal of pharmacological and toxicological methods.

[53]  David S. Booth,et al.  Visualizing proteins and macromolecular complexes by negative stain EM: from grid preparation to image acquisition. , 2011, Journal of visualized experiments : JoVE.

[54]  Bali Pulendran,et al.  Immunological mechanisms of vaccination , 2011, Nature Immunology.

[55]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[56]  Randy J. Read,et al.  Acta Crystallographica Section D Biological , 2003 .

[57]  K. Henrick,et al.  Inference of macromolecular assemblies from crystalline state. , 2007, Journal of molecular biology.

[58]  Randy J. Read,et al.  Phaser crystallographic software , 2007, Journal of applied crystallography.

[59]  B. Champion,et al.  Antibody-targeted vaccines , 2007, Oncogene.

[60]  오윤석,et al.  Adjuvants , 2021, Visceral Leishmaniasis.

[61]  William C. Hwang,et al.  Structural Basis of Neutralization by a Human Anti-severe Acute Respiratory Syndrome Spike Protein Antibody, 80R* , 2006, Journal of Biological Chemistry.

[62]  Yang Feng,et al.  Structure of Severe Acute Respiratory Syndrome Coronavirus Receptor-binding Domain Complexed with Neutralizing Antibody* , 2006, Journal of Biological Chemistry.

[63]  I. Barr,et al.  Reactogenicity and immunogenicity of an inactivated influenza vaccine administered by intramuscular or subcutaneous injection in elderly adults. , 2006, Vaccine.

[64]  M. Luscher,et al.  Conformational constraints imposed on a pan-neutralizing HIV-1 antibody epitope result in increased antigenicity but not neutralizing response. , 2005, Vaccine.

[65]  G. Crooks,et al.  WebLogo: a sequence logo generator. , 2004, Genome research.

[66]  A. Sette,et al.  Linear PADRE T Helper Epitope and Carbohydrate B Cell Epitope Conjugates Induce Specific High Titer IgG Antibody Responses1 , 2000, The Journal of Immunology.

[67]  Ricardo San Martin,et al.  Industrial uses and sustainable supply ofQuillaja saponaria (Rosaceae) saponins , 1999, Economic Botany.

[68]  S. Hoffman,et al.  Pan DR binding sequence provides T-cell help for induction of protective antibodies against Plasmodium yoelii sporozoites. , 1999, Vaccine.

[69]  B. Barber The immunotargeting approach to adjuvant-independent subunit vaccine design. , 1997, Seminars in immunology.

[70]  B. Barber,et al.  Studies of the adjuvant-independent antibody response to immunotargeting. Target structure dependence, isotype distribution, and induction of long term memory. , 1993, Journal of immunology.

[71]  A. Kaubisch,et al.  Enhanced antigen immunogenicity induced by bispecific antibodies , 1990, The Journal of experimental medicine.

[72]  B. Barber,et al.  Characterization of the adjuvant-free serological response to protein antigens coupled to antibodies specific for class II MHC determinants. , 1990, Vaccine.

[73]  M. Letarte,et al.  Cross-reaction of a monoclonal antibody to human MHC class II molecules with rabbit B cells. , 1988, Molecular immunology.

[74]  D. Segal,et al.  Targeted antigen presentation using crosslinked antibody heteroaggregates. , 1987, Journal of immunology.

[75]  B. Barber,et al.  Adjuvant-free IgG responses induced with antigen coupled to antibodies against class II MHC , 1987, Nature.

[76]  M. Letarte,et al.  Identification of several cell surface proteins of non-T, non-B acute lymphoblastic leukemia by using monoclonal antibodies. , 1985, Journal of immunology.

[77]  G. Klein,et al.  Establishment and characterization of an Epstein-Barr virus (EBC)-negative lymphoblastoid B cell line (BJA-B) from an exceptional, EBV-genome-negative African Burkitt's lymphoma. , 1975, Biomedicine / [publiee pour l'A.A.I.C.I.G.].

[78]  Jerzy K. Kulski,et al.  The HLA genomic loci map: expression, interaction, diversity and disease , 2009, Journal of Human Genetics.

[79]  J. Skehel,et al.  The immunotargeting approach to adjuvant-independent immunization with influenza haemagglutinin. , 1993, Vaccine.

[80]  B. Barber,et al.  Adjuvant-independent induction of immune responses by antibody-mediated targeting of protein and peptide antigens. , 1992, Research in immunology.