Aluminum-rich belite sulfoaluminate cements: Clinkering and early age hydration

Belite sulfoaluminate (BSA) cements have been proposed as environmentally friendly building materials, as their production may release up to 35% less CO{sub 2} into the atmosphere when compared to ordinary Portland cements. Here, we discuss the laboratory production of three aluminum-rich BSA clinkers with nominal mineralogical compositions in the range C{sub 2}S (50-60%), C{sub 4}A{sub 3}$$ (20-30%), CA (10%) and C{sub 12}A{sub 7} (10%). Using thermogravimetry, differential thermal analysis, high temperature microscopy, and X-ray powder diffraction with Rietveld quantitative phase analysis, we found that burning for 15 min at 1350 deg. C was the optimal procedure, in these experimental conditions, for obtaining the highest amount of C{sub 4}A{sub 3}$$, i.e. a value as close as possible to the nominal composition. Under these experimental conditions, three different BSA clinkers, nominally with 20, 30 and 30 wt.% of C{sub 4}A{sub 3}$$, had 19.6, 27.1 and 27.7 wt.%, C{sub 4}A{sub 3}$$ respectively, as determined by Rietveld analysis. We also studied the complex hydration process of BSA cements prepared by mixing BSA clinkers and gypsum. We present a methodology to establish the phase assemblage evolution of BSA cement pastes with time, including amorphous phases and free water. The methodology is based on Rietveld quantitative phase analysis of synchrotron and laboratory X-ray powder diffraction data coupled with chemical constraints. A parallel calorimetric study is also reported. It is shown that the beta-C{sub 2}S phase is more reactive in aluminum-rich BSA cements than in standard belite cements. On the other hand, C{sub 4}A{sub 3}$ reacts faster than the belite phases. The gypsum ratio in the cement is also shown to be an important factor in the phase evolution.

[1]  J. Pera,et al.  New applications of calcium sulfoaluminate cement , 2004 .

[2]  H. Rietveld A profile refinement method for nuclear and magnetic structures , 1969 .

[3]  C. Popescu,et al.  Industrial trial production of low energy belite cement , 2003 .

[4]  R. J. Hill,et al.  Rietveld crystal structure refinements, crystal chemistry and calculated powder diffraction data for the polymorphs of dicalcium silicate and related phases , 1995 .

[5]  F. Glasser,et al.  Hydration of calcium sulfoaluminate cement at less than 24 h , 2002 .

[6]  H. Saalfeld,et al.  Refinement of the crystal structure of gibbsite, A1(OH)3 , 1974 .

[7]  R. Willett,et al.  A refinement of the crystal structure of KSCN , 1968 .

[8]  I. Odler,et al.  Investigations on high SO3 portland clinkers and cements I. Clinker synthesis and cement preparation , 1996 .

[9]  H. Saalfeld,et al.  Silicon‐Free Compounds with Sodalite Structure , 1972 .

[10]  Á. G. Torre,et al.  Quantitative Phase Analysis of Laboratory-Active Belite Clinkers by Synchrotron Powder Diffraction , 2007 .

[11]  F. Glasser,et al.  The role of sulphates in cement clinkering: Subsolidus phase relations in the system CaO-Aℓ2O3-SiO2-SO3 , 1979 .

[12]  B. Lothenbach,et al.  The AFm phase in Portland cement , 2007 .

[13]  Brett A. Hunter,et al.  A comparative study of Rietveld phase analysis of cement clinker using neutron, laboratory X-ray, and synchrotron data , 2006, Powder Diffraction.

[14]  J. Havlica,et al.  Mechanism of ettringite and monosulphate formation , 1992 .

[15]  J. Jeffery,et al.  The crystal structure of tricalcium aluminate, Ca3Al2O6 , 1975 .

[16]  L. Kacimi,et al.  Reduction of clinkerization temperature by using phosphogypsum. , 2006, Journal of hazardous materials.

[17]  G. Will,et al.  Charge density in anhydrite, CaSO4, from X-ray and neutron diffraction measurements , 1980 .

[18]  John Bensted,et al.  Structure and Performance of Cements , 2001 .

[19]  M. Aranda,et al.  Full phase analysis of portland clinker by penetrating synchrotron powder diffraction. , 2001, Analytical chemistry.

[20]  Á. G. Torre,et al.  Mineralogical phase analysis of alkali and sulfate bearing belite rich laboratory clinkers , 2007 .

[21]  F. Goetz-Neunhoeffer,et al.  Quantitative in situ X-ray diffraction analysis of early hydration of Portland cement at defined temperatures , 2009, Powder Diffraction.

[22]  Á. G. Torre,et al.  Belite portland clinkers: synthesis and mineralogical analysis , 2005 .

[23]  A. Chatterjee High belite cements—Present status and future technological options: Part I , 1996 .

[24]  F. Goetz-Neunhoeffer,et al.  Refined ettringite (Ca6Al2(SO4)3(OH)12∙26H2O) structure for quantitative X-ray diffraction analysis , 2006, Powder Diffraction.

[25]  A. Jephcoat,et al.  A correction for powder diffraction peak asymmetry due to axial divergence , 1994 .

[26]  W. Hörkner,et al.  Zur kristallstruktur von CaAl2O4 , 1976 .

[27]  F. Montagnaro,et al.  Synthesis, Hydration Properties and Environmentally Friendly Features of Calcium Sulfoaluminate Cements , 2007 .

[28]  A. Whittaker,et al.  Structure of calcium aluminate sulfate Ca4Al6O16S , 1995 .

[29]  John Bensted,et al.  Hydration of Portland Cement , 1983 .

[30]  G. Natta,et al.  Soluzioni solide, isomorfismo e simmorfismo tra gli ossidi dei metalli bivalenti. - 1. Sistemi: CaO-CdO, CaO-MnO, CaO-CoO, CaO-NiO, CaO-MgO. , 1929 .

[31]  A. G. Holterhoff,et al.  Calcium aluminate cements , 1990 .

[32]  I. Janotka,et al.  An experimental study on the upgrade of sulfoaluminate—belite cement systems by blending with Portland cement , 1999 .

[33]  C. Alvarez-Rúa,et al.  Structure and microstructure of gypsum and its relevance to Rietveld quantitative phase analyses , 2004, Powder Diffraction.

[34]  I. Janotka,et al.  PERFORMANCE OF SULPHOALUMINATE-BELITE CEMENT WITH HIGH C4A3S CONTENT , 2007 .

[35]  I. Odler,et al.  Investigations on high SO3 portland clinkers and cements II. Properties of cements , 1996 .

[36]  Keith Quillin,et al.  Performance of belite–sulfoaluminate cements , 2001 .

[37]  M. Kimata,et al.  The structural property of syntheticgehlenite, Ca2Al2SiO7 , 1982 .

[38]  H. Saalfeld,et al.  Refinement of the crystal structure of gibbsite, Al(OH)3 , 1974 .

[39]  D. Agrawal,et al.  Microwave sintering of sulphoaluminate cement with utility wastes , 2001 .

[40]  E. Gartner Industrially interesting approaches to “low-CO2” cements ☆ , 2004 .

[41]  Á. G. Torre,et al.  Rietveld quantitative amorphous content analysis , 2001 .

[42]  Jerome B. Hastings,et al.  Rietveld refinement of Debye–Scherrer synchrotron X‐ray data from Al2O3 , 1987 .

[43]  Barnes,et al.  Fast in situ x-ray-diffraction studies of chemical reactions: A synchrotron view of the hydration of tricalcium aluminate. , 1996, Physical review. B, Condensed matter.

[44]  E. Viggh,et al.  Hydraulic properties of sulphoaluminate belite cement based on steelmaking slags , 2007 .

[45]  Á. G. Torre,et al.  Phase development in conventional and active belite cement pastes by Rietveld analysis and chemical constraints , 2009 .

[46]  A. P. Hammersley,et al.  Two-dimensional detector software: From real detector to idealised image or two-theta scan , 1996 .

[47]  S. Kurajica,et al.  Dehydration of a layered double hydroxide – C2AH8 , 2007 .

[48]  T. Yano,et al.  Refinement of the crystal structure of ?-Ca2SiO4 , 1980 .

[49]  Duncan Herfort,et al.  Sustainable Development and Climate Change Initiatives , 2008 .

[50]  Della M. Roy,et al.  Sulfoaluminate-belite cement from low-calcium fly ash and sulfur-rich and other industrial by-products , 1999 .

[51]  Martyn Jones,et al.  The Production of Low Energy Cements , 2019, Lea's Chemistry of Cement and Concrete.

[52]  E. Passaglia,et al.  Straetlingite; crystal structure, chemistry, and a reexamination of its polytype vertumnite , 1990 .

[53]  Liang Zhang,et al.  Development of the use of sulfo- and ferroaluminate cements in China , 1999 .

[54]  S. Bruque,et al.  Crystal structures and in-situ formation study of mayenite electrides. , 2007, Inorganic chemistry.

[55]  K. Scrivener,et al.  Quantitative study of Portland cement hydration by X-ray diffraction/rietveld analysis and independent methods , 2004 .

[56]  Miguel A. G. Aranda,et al.  Accuracy in Rietveld quantitative phase analysis of Portland cements , 2003 .

[57]  David James Retallack,et al.  On-line X-ray diffraction for quantitative phase analysis: Application in the Portland cement industry , 2001, Powder Diffraction.

[58]  F. Puertas,et al.  Kinetics of the thermal decomposition of C4A3S̄ in air , 1995 .

[59]  J. Ideker,et al.  Calcium Aluminate Cements , 2019, Lea's Chemistry of Cement and Concrete.

[60]  J. Sanz,et al.  Structural Changes Induced on Mullite Precursors by Thermal Treatment: A 27Al MAS‐NMR Investigation , 1991 .

[61]  S. Galí,et al.  Crystal Structure Solution of Hydrated High-Alumina Cement from X-Ray Powder Diffraction Data. , 1998 .

[62]  F. Glasser,et al.  High-performance cement matrices based on calcium sulfoaluminate–belite compositions , 2001 .

[63]  P. Norby,et al.  Multipurpose imaging-plate camera for in situ powder XRD at the GILDA beamline , 2001 .

[64]  I. Odler Special Inorganic Cements , 2000 .

[65]  Á. G. Torre,et al.  Round robin on Rietveld quantitative phase analysis of Portland cements , 2009 .

[66]  D. Knöfel,et al.  Influence of alkalies on the composition of belite-rich cement clinkers and the technological properties of the resulting cements , 1986 .

[67]  J. Serratosa,et al.  Aluminum‐27 and Silicon‐29 Magic‐Angle Spinning Nuclear Magnetic Resonance Study of the Kaolinite‐Mullite Transformation , 1988 .