Micrometeorological Modeling of Radiative and Convective Effects with a Building-Resolving Code

AbstractIn many micrometeorological studies with computational fluid dynamics, building-resolving models usually assume a neutral atmosphere. Nevertheless, urban radiative transfers play an important role because of their influence on the energy budget. To take into account atmospheric radiation and the thermal effects of the buildings in simulations of atmospheric flow and pollutant dispersion in urban areas, a three-dimensional (3D) atmospheric radiative scheme has been developed in the atmospheric module of the Code_Saturne 3D computational fluid dynamic model. On the basis of the discrete ordinate method, the radiative model solves the radiative transfer equation in a semitransparent medium for complex geometries. The spatial mesh discretization is the same as the one used for the dynamics. This paper describes ongoing work with the development of this model. The radiative scheme was previously validated with idealized cases. Here, results of the full coupling of the radiative and thermal schemes with...

[1]  Aya Hagishima,et al.  A Simple Energy Balance Model for Regular Building Arrays , 2005 .

[2]  Yen-Sen Chen,et al.  Development of an unstructured radiation model applicable for two-dimensional planar, axisymmetric, and three-dimensional geometries , 1999 .

[3]  Márton Balczó,et al.  FLOW AND DISPERSAL SIMULATIONS OF THE MOCK URBAN SETTING TEST , 2008 .

[4]  P. Mestayer,et al.  Parameterization of the Urban Energy Budget with the Submesoscale Soil Model , 2006 .

[5]  J. Louis A parametric model of vertical eddy fluxes in the atmosphere , 1979 .

[6]  M. Rotach Profiles of turbulence statistics in and above an urban street canyon , 1995 .

[7]  Bruno Sportisse,et al.  Atmospheric Boundary Layer , 2010 .

[8]  A. Clappier,et al.  An Urban Surface Exchange Parameterisation for Mesoscale Models , 2002 .

[9]  Eugene Yee,et al.  Concentration Fluctuation Measurements in a Plume Dispersing Through a Regular Array of Obstacles , 2004 .

[10]  Francis Miguet,et al.  A daylight simulation tool for urban and architectural spaces—application to transmitted direct and diffuse light through glazing , 2002 .

[11]  Timothy R. Oke,et al.  Evaluation of the Town Energy Balance (TEB) Scheme with Direct Measurements from Dry Districts in Two Cities , 2002 .

[12]  Patrice G. Mestayer,et al.  Parameterization of the Urban Water Budget with the Submesoscale Soil Model , 2006 .

[13]  X. Briottet,et al.  The Canopy and Aerosol Particles Interactions in TOulouse Urban Layer (CAPITOUL) experiment , 2008 .

[14]  J. Monteith,et al.  Boundary Layer Climates. , 1979 .

[15]  Rainald Löhner,et al.  Comparisons of model simulations with observations of mean flow and turbulence within simple obstacle arrays , 2002 .

[16]  Gerald Mills,et al.  An urban canopy-layer climate model , 1997 .

[17]  W. Fiveland Discrete-Ordinates Solutions of the Radiative Transport Equation for Rectangular Enclosures , 1984 .

[18]  Maya Milliez Modélisation micro-météorologique en milieu urbain : dispersion des polluants et prise en compte des effets radiatifs , 2006 .

[19]  Jean-Philippe Gastellu-Etchegorry,et al.  DART: a 3D model for simulating satellite images and studying surface radiation budget , 2004 .

[20]  J. Garratt The Atmospheric Boundary Layer , 1992 .

[21]  A. Arnfield Two decades of urban climate research: a review of turbulence, exchanges of energy and water, and the urban heat island , 2003 .

[22]  Maya Milliez,et al.  Computational Fluid Dynamical Modelling of Concentration Fluctuations in an Idealized Urban Area , 2008 .

[23]  T. J. Lyons,et al.  Simulation of surface urban heat islands under ‘IDEAL’ conditions at night part 1: Theory and tests against field data , 1991 .

[24]  E. Scott Krayenhoff,et al.  A microscale three-dimensional urban energy balance model for studying surface temperatures , 2007 .

[25]  Maya Milliez,et al.  Numerical simulations of pollutant dispersion in an idealized urban area, for different meteorological conditions , 2007 .

[26]  Ronald M. Cionco,et al.  A Mathematical Model for Air Flow in a Vegetative Canopy , 1965 .

[27]  Fernando Camelli,et al.  VLES Study of MUST Experiment , 2005 .

[28]  J. Deardorff Efficient prediction of ground surface temperature and moisture, with inclusion of a layer of vegetation , 1978 .

[29]  F. Archambeau,et al.  Code Saturne: A Finite Volume Code for the computation of turbulent incompressible flows - Industrial Applications , 2004 .

[30]  Timothy R. Oke,et al.  Heat Storage in Urban Areas: Local-Scale Observations and Evaluation of a Simple Model , 1999 .

[31]  J. Truelove,et al.  Discrete-Ordinate Solutions of the Radiation Transport Equation , 1987 .

[32]  Valéry Masson,et al.  Modeling the Surface Energy Balance of the Core of an Old Mediterranean City: Marseille , 2004 .

[33]  D. J. Hall,et al.  Validation of the Urban Dispersion Model (UDM) , 2003 .

[34]  R. Macdonald,et al.  Modelling The Mean Velocity Profile In The Urban Canopy Layer , 2000 .

[35]  Valéry Masson,et al.  A Physically-Based Scheme For The Urban Energy Budget In Atmospheric Models , 2000 .

[36]  Akira Hoyano,et al.  Thermal Design Tool for Outdoor Space Based on a Numerical Simulation System Using 3D-CAD , 2004 .

[37]  Akira Hoyano,et al.  Thermal design tool for outdoor spaces based on heat balance simulation using a 3D-CAD system , 2008 .

[38]  J. Gastellu-Etchegorry,et al.  3D modeling of satellite spectral images, radiation budget and energy budget of urban landscapes , 2008 .

[39]  Jean-Pierre Lagouarde,et al.  Modelling Daytime Thermal Infrared Directional Anisotropy over Toulouse City Centre , 2010 .