Efficient use of the resolution of the identity approximation in time-dependent density functional calculations with hybrid density functionals

[1]  D. Chong Recent Advances in Density Functional Methods Part III , 2002 .

[2]  F. Weigend,et al.  Efficient use of the correlation consistent basis sets in resolution of the identity MP2 calculations , 2002 .

[3]  Frank Neese,et al.  Prediction of electron paramagnetic resonance g values using coupled perturbed Hartree–Fock and Kohn–Sham theory , 2001 .

[4]  Evert Jan Baerends,et al.  Shape corrections to exchange-correlation potentials by gradient-regulated seamless connection of model potentials for inner and outer region , 2001 .

[5]  E. Baerends,et al.  Towards excitation energies and (hyper)polarizability calculations of large molecules. Application of parallelization and linear scaling techniques to time‐dependent density functional response theory , 2000 .

[6]  Christof Hättig,et al.  CC2 excitation energy calculations on large molecules using the resolution of the identity approximation , 2000 .

[7]  N. Rösch,et al.  An efficient method for calculating molecular excitation energies by time-dependent density-functional theory , 2000 .

[8]  M. Head‐Gordon,et al.  Configuration interaction singles, time-dependent Hartree-Fock, and time-dependent density functional theory for the electronic excited states of extended systems , 1999 .

[9]  Benjamin T. Miller,et al.  A parallel implementation of the analytic nuclear gradient for time-dependent density functional theory within the Tamm–Dancoff approximation , 1999 .

[10]  So Hirata,et al.  Time-dependent density functional theory for radicals: An improved description of excited states with substantial double excitation character , 1999 .

[11]  G. Scuseria,et al.  An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules , 1998 .

[12]  Holger Patzelt,et al.  RI-MP2: optimized auxiliary basis sets and demonstration of efficiency , 1998 .

[13]  Florian Weigend,et al.  Auxiliary basis sets for main row atoms and transition metals and their use to approximate Coulomb potentials , 1997 .

[14]  Marco Häser,et al.  CALCULATION OF EXCITATION ENERGIES WITHIN TIME-DEPENDENT DENSITY FUNCTIONAL THEORY USING AUXILIARY BASIS SET EXPANSIONS , 1997 .

[15]  Stefan Grimme,et al.  Density functional calculations with configuration interaction for the excited states of molecules , 1996 .

[16]  R. Ahlrichs,et al.  Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory , 1996 .

[17]  Dennis R. Salahub,et al.  Dynamic polarizabilities and excitation spectra from a molecular implementation of time‐dependent density‐functional response theory: N2 as a case study , 1996 .

[18]  Marco Häser,et al.  Auxiliary basis sets to approximate Coulomb potentials , 1995 .

[19]  Benny G. Johnson,et al.  An implementation of analytic second derivatives of the gradient‐corrected density functional energy , 1994 .

[20]  R. Leeuwen,et al.  Exchange-correlation potential with correct asymptotic behavior. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[21]  Bernard Philippe,et al.  The Davidson Method , 1994, SIAM J. Sci. Comput..

[22]  J. Almlöf,et al.  Integral approximations for LCAO-SCF calculations , 1993 .

[23]  Hans W. Horn,et al.  Fully optimized contracted Gaussian basis sets for atoms Li to Kr , 1992 .

[24]  Michael J. Frisch,et al.  Toward a systematic molecular orbital theory for excited states , 1992 .

[25]  John R. Sabin,et al.  On some approximations in applications of Xα theory , 1979 .