Remote Sensing in Agriculture - Accomplishments, Limitations, and Opportunities

[1]  Liangyun Liu,et al.  Prediction of grain protein content in winter wheat (Triticum aestivum L.) using plant pigment ratio (PPR) , 2004 .

[2]  John P. Fulton,et al.  An overview of current and potential applications of thermal remote sensing in precision agriculture , 2017, Comput. Electron. Agric..

[3]  David B. Marx,et al.  Quantification and Mapping of Surface Residue Cover for Maize and Soybean Fields in South Central Nebraska , 2016 .

[4]  M. Oppenheimer,et al.  Comparing mechanistic and empirical model projections of crop suitability and productivity: implications for ecological forecasting , 2013 .

[5]  M. Tasumi Estimating evapotranspiration using METRIC model and Landsat data for better understandings of regional hydrology in the western Urmia Lake Basin , 2019 .

[6]  Eve McDonald-Madden,et al.  Using Landsat observations (1988–2017) and Google Earth Engine to detect vegetation cover changes in rangelands - A first step towards identifying degraded lands for conservation , 2019, Remote Sensing of Environment.

[7]  Robert S. Freeland,et al.  Effective and efficient agricultural drainage pipe mapping with UAS thermal infrared imagery: A case study , 2018 .

[8]  F. López-Granados,et al.  Weed Mapping in Early-Season Maize Fields Using Object-Based Analysis of Unmanned Aerial Vehicle (UAV) Images , 2013, PloS one.

[9]  Troy Jensen,et al.  Detecting the attributes of a wheat crop using digital imagery acquired from a low-altitude platform , 2007 .

[10]  Jin Teng,et al.  Impact of DEM accuracy and resolution on topographic indices , 2010, Environ. Model. Softw..

[11]  James H. Everitt,et al.  Using Satellite Data to Map False Broomweed (Ericameria austrotexana) Infestations on South Texas Rangelands , 1993, Weed Technology.

[12]  Kurt C. Lawrence,et al.  Essential processing methods of hyperspectral images of agricultural and food products , 2020 .

[13]  Melba M. Crawford,et al.  Crop Residue Modeling and Mapping Using Landsat, ALI, Hyperion and Airborne Remote Sensing Data , 2013, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[14]  David Hughes,et al.  Deep Learning for Image-Based Cassava Disease Detection , 2017, Front. Plant Sci..

[15]  Jesus Soria-Ruiz,et al.  Maize crop yield estimation with remote sensing and empirical models , 2017, 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[16]  Scott B. Jones,et al.  Mapping soil moisture with the OPtical TRApezoid Model (OPTRAM) based on long-term MODIS observations , 2018, Remote Sensing of Environment.

[17]  Nataliia Kussul,et al.  Deep Learning Classification of Land Cover and Crop Types Using Remote Sensing Data , 2017, IEEE Geoscience and Remote Sensing Letters.

[18]  Laura C. Bowling,et al.  Detecting subsurface drainage systems and estimating drain spacing in intensively managed agricultural landscapes. , 2009 .

[19]  J. Bailey,et al.  Improving productivity and increasing the efficiency of soil nutrient management on grassland farms in the UK and Ireland using precision agriculture technology , 2019, European Journal of Agronomy.

[20]  Noboru Noguchi,et al.  Monitoring of Wheat Growth Status and Mapping of Wheat Yield's within-Field Spatial Variations Using Color Images Acquired from UAV-camera System , 2017, Remote. Sens..

[21]  Stefano Amaducci,et al.  Nitrogen Status Assessment for Variable Rate Fertilization in Maize through Hyperspectral Imagery , 2014, Remote. Sens..

[22]  Rémy Fieuzal,et al.  Assimilation of LAI and Dry Biomass Data From Optical and SAR Images Into an Agro-Meteorological Model to Estimate Soybean Yield , 2016, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[23]  Zhengwei Yang,et al.  CropScape: A Web service based application for exploring and disseminating US conterminous geospatial cropland data products for decision support , 2012 .

[24]  Chu Zhang,et al.  Early Detection of Botrytis cinerea on Eggplant Leaves Based on Visible and Near-Infrared Spectroscopy , 2008 .

[25]  Pablo J. Zarco-Tejada,et al.  High-resolution airborne hyperspectral and thermal imagery for early detection of Verticillium wilt of olive using fluorescence, temperature and narrow-band spectral indices , 2013 .

[26]  Laura C. Bowling,et al.  Automated Identification of Tile Lines from Remotely Sensed Data , 2008 .

[27]  Gunter Menz,et al.  Multi-temporal wheat disease detection by multi-spectral remote sensing , 2007, Precision Agriculture.

[28]  Alex Martin,et al.  A simulation of herbicide use based on weed spatial distribution , 1995 .

[29]  N. Koedam,et al.  The advantages of using drones over space-borne imagery in the mapping of mangrove forests , 2018, PloS one.

[30]  Austin M. Jensen,et al.  Assessment of Surface Soil Moisture Using High-Resolution Multi-Spectral Imagery and Artificial Neural Networks , 2015, Remote. Sens..

[31]  M. Hodgson,et al.  An evaluation of LIDAR- and IFSAR-derived digital elevation models in leaf-on conditions with USGS Level 1 and Level 2 DEMs , 2003 .

[32]  Jorge Torres-Sánchez,et al.  Object-based early monitoring of a grass weed in a grass crop using high resolution UAV imagery , 2016, Agronomy for Sustainable Development.

[33]  Martha C. Anderson,et al.  Free Access to Landsat Imagery , 2008, Science.

[34]  Jiansheng Wu,et al.  Soil moisture retrieving using hyperspectral data with the application of wavelet analysis , 2013, Environmental Earth Sciences.

[35]  Bin Liu,et al.  Developing a new Crop Circle active canopy sensor-based precision nitrogen management strategy for winter wheat in North China Plain , 2017, Precision Agriculture.

[36]  Blair M. McKenzie,et al.  Application of Bayesian Belief Networks to quantify and map areas at risk to soil threats: Using soil compaction as an example , 2013 .

[37]  M. Weiss,et al.  Remote sensing for agricultural applications: A meta-review , 2020 .

[38]  Shaodan Chen,et al.  Spatial Downscaling Methods of Soil Moisture Based on Multisource Remote Sensing Data and Its Application , 2019, Water.

[39]  T. Carlson An Overview of the “Triangle Method” for Estimating Surface Evapotranspiration and Soil Moisture from Satellite Imagery , 2007, Sensors (Basel, Switzerland).

[40]  S. Shearer,et al.  PLANT IDENTIFICATION USING COLOR CO-OCCURRENCE MATRICES , 1990 .

[41]  Guoqing Zhou,et al.  Estimation of Soil Moisture from Optical and Thermal Remote Sensing: A Review , 2016, Sensors.

[42]  Joachim Denzler,et al.  Deep learning and process understanding for data-driven Earth system science , 2019, Nature.

[43]  Chaowei Yang,et al.  Utilizing Cloud Computing to address big geospatial data challenges , 2017, Comput. Environ. Urban Syst..

[44]  Jayme Garcia Arnal Barbedo,et al.  A review on the main challenges in automatic plant disease identification based on visible range images , 2016 .

[45]  B. Lorenzen,et al.  Changes in leaf spectral properties induced in barley by cereal powdery mildew , 1989 .

[46]  Hoam Chung,et al.  Adaptive Estimation of Crop Water Stress in Nectarine and Peach Orchards Using High-Resolution Imagery from an Unmanned Aerial Vehicle (UAV) , 2017, Remote. Sens..

[47]  Mohammad Reza Mobasheri,et al.  Soil moisture content assessment based on Landsat 8 red, near-infrared, and thermal channels , 2016 .

[48]  Jin Zhang,et al.  An overview and comparison of machine-learning techniques for classification purposes in digital soil mapping , 2016 .

[49]  John P. Fulton,et al.  Integration of high resolution remotely sensed data and machine learning techniques for spatial prediction of soil properties and corn yield , 2018, Comput. Electron. Agric..

[50]  D. Lobell,et al.  A scalable satellite-based crop yield mapper , 2015 .

[51]  Matthias Drusch,et al.  Sentinel-2: ESA's Optical High-Resolution Mission for GMES Operational Services , 2012 .

[52]  Mostafa Rahimi Azghadi,et al.  DeepWeeds: A Multiclass Weed Species Image Dataset for Deep Learning , 2018, Scientific Reports.

[53]  Michael J. Oimoen,et al.  Accuracy assessment of the U.S. Geological Survey National Elevation Dataset, and comparison with other large-area elevation datasets: SRTM and ASTER , 2014 .

[54]  Gaines E. Miles,et al.  MACHINE VISION AND IMAGE PROCESSING FOR PLANT IDENTIFICATION. , 1986 .

[55]  D. Moshou,et al.  The potential of optical canopy measurement for targeted control of field crop diseases. , 2003, Annual review of phytopathology.

[56]  Kemal Gökkaya,et al.  Subsurface tile drained area detection using GIS and remote sensing in an agricultural watershed , 2017 .

[57]  S. Arafat,et al.  Classification of some strategic crops in Egypt using multi remotely sensing sensors and time series analysis , 2019 .

[58]  Craig S. T. Daughtry,et al.  Discriminating Crop Residues from Soil by Shortwave Infrared Reflectance , 2001 .

[59]  D. Flanagan,et al.  SITE-SPECIFIC DECISION-MAKING BASED ON RTK GPS SURVEY AND SIX ALTERNATIVE ELEVATION DATA SOURCES: WATERSHED TOPOGRAPHY AND DELINEATION , 2002 .

[60]  José Manuel Amigo,et al.  Pre-processing of hyperspectral images. Essential steps before image analysis , 2012 .

[61]  Weixing Cao,et al.  Predicting grain yield and protein content in wheat by fusing multi-sensor and multi-temporal remote-sensing images , 2014 .

[63]  Johanna Link,et al.  Combined Spectral and Spatial Modeling of Corn Yield Based on Aerial Images and Crop Surface Models Acquired with an Unmanned Aircraft System , 2014, Remote. Sens..

[64]  John C. Lin,et al.  Daily Satellite Observations of Methane from Oil and Gas Production Regions in the United States , 2020, Scientific Reports.

[65]  S. Running,et al.  A review of remote sensing based actual evapotranspiration estimation , 2016 .

[66]  G. W. Cussans,et al.  A technique for mapping the spatial distribution of Elymus repots, with estimates of the potential reduction in herbicide usage from patch spraying , 1996 .

[67]  Frank Veroustraete,et al.  Assessment of Evapotranspiration and Soil Moisture Content Across Different Scales of Observation , 2008, Sensors.

[68]  A. J. Richardson,et al.  Distinguishing weed from crop plants using video remote sensing , 1985 .

[69]  Sjaak Wolfert,et al.  A Future Internet Collaboration Platform for Safe and Healthy Food from Farm to Fork , 2014, 2014 Annual SRII Global Conference.

[70]  Piero Toscano,et al.  Intercomparison of UAV, Aircraft and Satellite Remote Sensing Platforms for Precision Viticulture , 2015, Remote. Sens..

[71]  F. López-Granados,et al.  Multi-temporal mapping of the vegetation fraction in early-season wheat fields using images from UAV , 2014 .

[72]  Robert S. Freeland,et al.  Overall results and key findings on the use of UAV visible-color, multispectral, and thermal infrared imagery to map agricultural drainage pipes , 2020 .

[73]  Gustau Camps-Valls,et al.  Quantifying Vegetation Biophysical Variables from Imaging Spectroscopy Data: A Review on Retrieval Methods , 2018, Surveys in Geophysics.

[74]  A. Kaiser,et al.  Erosion processes in calanchi in the Upper Orcia Valley, Southern Tuscany, Italy based on multitemporal high-resolution terrestrial LiDAR and UAV surveys , 2016 .

[75]  Urs Schmidhalter,et al.  Digital Counts of Maize Plants by Unmanned Aerial Vehicles (UAVs) , 2017, Remote. Sens..

[76]  Terry Griffin,et al.  Early-Season Stand Count Determination in Corn via Integration of Imagery from Unmanned Aerial Systems (UAS) and Supervised Learning Techniques , 2018, Remote. Sens..

[77]  B. Allred,et al.  Delineation of tile-drain networks using thermal and multispectral imagery—Implications for water quantity and quality differences from paired edge-of-field sites , 2018, Journal of Soil and Water Conservation.

[78]  Lei Guo,et al.  Wheat yellow rust monitoring by learning from multispectral UAV aerial imagery , 2018, Comput. Electron. Agric..

[79]  A. Kaleita,et al.  Relationship Between Soil Moisture Content and Soil Surface Reflectance , 2005 .

[80]  Stefano Marino,et al.  Hyperspectral vegetation indices for predicting onion (Allium cepa L.) yield spatial variability , 2015, Comput. Electron. Agric..

[81]  Muhammad Iqbal Habibie,et al.  Land suitability analysis for maize production in Indonesia using satellite remote sensing and GIS-based multicriteria decision support system , 2019, GeoJournal.

[82]  R. Baker,et al.  Mechanistic models versus machine learning, a fight worth fighting for the biological community? , 2018, Biology Letters.

[83]  Luis Miguel Contreras-Medina,et al.  A Review of Methods for Sensing the Nitrogen Status in Plants: Advantages, Disadvantages and Recent Advances , 2013, Sensors.

[84]  George P. Petropoulos,et al.  Future perspectives and challenges in hyperspectral remote sensing , 2020 .

[85]  Saeid Parsian,et al.  Two new soil moisture indices based on the NIR-red triangle space of Landsat-8 data , 2016, Int. J. Appl. Earth Obs. Geoinformation.

[86]  S. Wolfert,et al.  Big Data in Smart Farming – A review , 2017 .

[87]  R. Ehsani,et al.  Optimum spectral and geometric parameters for early detection of laurel wilt disease in avocado , 2015 .

[88]  Gérard Dedieu,et al.  The Indian-French Trishna Mission: Earth Observation in the Thermal Infrared with High Spatio-Temporal Resolution , 2018, IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium.

[89]  Marcel Salathé,et al.  Using Deep Learning for Image-Based Plant Disease Detection , 2016, Front. Plant Sci..

[90]  Martha C. Anderson,et al.  The shared and unique values of optical, fluorescence, thermal and microwave satellite data for estimating large-scale crop yields. , 2016 .

[91]  Ni Wang,et al.  Estimation of Wheat LAI at Middle to High Levels Using Unmanned Aerial Vehicle Narrowband Multispectral Imagery , 2017, Remote. Sens..

[92]  David M. Holland,et al.  Accurate coastal DEM generation by merging ASTER GDEM and ICESat/GLAS data over Mertz Glacier, Antarctica , 2018 .

[93]  Austin Jensen,et al.  Spatial Root Zone Soil Water Content Estimation in Agricultural Lands Using Bayesian‐Based Artificial Neural Networks and High‐ Resolution Visual, NIR, and Thermal Imagery , 2017 .

[94]  Chenghai Yang,et al.  Rapeseed Seedling Stand Counting and Seeding Performance Evaluation at Two Early Growth Stages Based on Unmanned Aerial Vehicle Imagery , 2018, Front. Plant Sci..

[95]  Patrick Hostert,et al.  The EnMAP Spaceborne Imaging Spectroscopy Mission for Earth Observation , 2015, Remote. Sens..

[96]  W. Raun,et al.  Evaluation of mid-season sensor based nitrogen fertilizer recommendations for winter wheat using different estimates of yield potential , 2016, Precision Agriculture.

[97]  Daniel K. Y. Tan,et al.  Leaf nitrogen determination using non-destructive techniques–A review , 2017 .

[98]  F. Baret,et al.  Quantification of plant stress using remote sensing observations and crop models: the case of nitrogen management. , 2006, Journal of experimental botany.

[99]  Zhengwei Yang,et al.  Web service-based SMAP soil moisture data visualization, dissemination and analytics based on vegscape framwork , 2016, 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[100]  Wen Zhang,et al.  A review on weed detection using ground-based machine vision and image processing techniques , 2019, Comput. Electron. Agric..

[101]  Hans R. Schultz,et al.  Early pathogen detection under different water status and the assessment of spray application in vineyards through the use of thermal imagery , 2008, Precision Agriculture.

[102]  Aifeng Lv,et al.  A Universal Ts‐VI Triangle Method for the Continuous Retrieval of Evaporative Fraction From MODIS Products , 2017 .

[103]  Adel Hafiane,et al.  Deep leaning approach with colorimetric spaces and vegetation indices for vine diseases detection in UAV images , 2018, Comput. Electron. Agric..

[104]  J. L. Gabriel,et al.  Airborne and ground level sensors for monitoring nitrogen status in a maize crop , 2017 .

[105]  Karl-Heinz Dammer,et al.  Detection of head blight (Fusarium ssp.) in winter wheat by color and multispectral image analyses , 2011 .

[106]  Y. Cohen,et al.  Use of thermal and visible imagery for estimating crop water status of irrigated grapevine. , 2006, Journal of experimental botany.

[107]  Mohammad El-Hajj,et al.  Sentinel-1 Data for Winter Wheat Phenology Monitoring and Mapping , 2019, Remote. Sens..

[108]  A. J. Richardson,et al.  Light Reflectance and Remote Sensing of Weeds in Agronomic and Horticultural Crops , 1985, Weed science.

[109]  A. F. Colaço,et al.  Do crop sensors promote improved nitrogen management in grain crops , 2018 .

[110]  F. Baret,et al.  Estimates of plant density of wheat crops at emergence from very low altitude UAV imagery. , 2017 .

[111]  Marc-André Michaud,et al.  Precision Pesticide Delivery Based on Aerial Spectral Imaging , 2006 .

[112]  Esra Erten,et al.  Retrieval of vegetation height in rice fields using polarimetric SAR interferometry with TanDEM-X data , 2017 .

[113]  Pablo J. Zarco-Tejada,et al.  Unmanned Aerial System multispectral mapping for low and variable solar irradiance conditions: Potential of tensor decomposition , 2019, ISPRS Journal of Photogrammetry and Remote Sensing.

[114]  A. J. Richardsons,et al.  DISTINGUISHING VEGETATION FROM SOIL BACKGROUND INFORMATION , 1977 .

[115]  Ramesh P. Singh,et al.  Crop yield estimation model for Iowa using remote sensing and surface parameters , 2006 .

[116]  Joey N. Shaw,et al.  Evaluation of multispectral data for rapid assessment of wheat straw residue cover , 2004 .

[117]  Wenjiang Huang,et al.  A method of estimating soil moisture based on the linear decomposition of mixture pixels , 2013, Math. Comput. Model..

[118]  John P. Fulton,et al.  Integrating aerial images for in-season nitrogen management in a corn field , 2018, Comput. Electron. Agric..

[119]  John R. Schott,et al.  Landsat-8 Thermal Infrared Sensor (TIRS) Vicarious Radiometric Calibration , 2014, Remote. Sens..

[120]  Sreekala G. Bajwa,et al.  Investigation of the Effects of Soil Compaction in Cotton , 2010 .

[121]  D. Flanagan,et al.  Site-Specific Decision-Making Based on RTK GPS Survey and Six Alternative Elevation Data Sources: Soil Erosion Predictions , 2008 .

[122]  David B. Lobell,et al.  How much will precision nitrogen management pay off? An evaluation based on simulating thousands of corn fields over the US Corn-Belt , 2019, Field Crops Research.

[123]  Andreas Bauwe,et al.  Application of the SWAT Model for a Tile-Drained Lowland Catchment in North-Eastern Germany on Subbasin Scale , 2013, Water Resources Management.

[124]  Maria Mira Sarrió,et al.  Influencia del efecto de la humedad del suelo en la emisividad del infrarrojo térmico , 2007 .

[125]  F. V. van Eeuwijk,et al.  Combining Crop Growth Modeling and Statistical Genetic Modeling to Evaluate Phenotyping Strategies , 2019, Front. Plant Sci..

[126]  K. L. Martin,et al.  Optical Sensor‐Based Algorithm for Crop Nitrogen Fertilization , 2005 .

[127]  Michael Dixon,et al.  Google Earth Engine: Planetary-scale geospatial analysis for everyone , 2017 .

[128]  Zhenghong Yu,et al.  Automatic image-based detection technology for two critical growth stages of maize: Emergence and three-leaf stage , 2013 .

[129]  Case R. Medlin,et al.  Detection of Weed Species in Soybean Using Multispectral Digital Images1 , 2004, Weed Technology.

[130]  Claudia Notarnicola,et al.  Review of Machine Learning Approaches for Biomass and Soil Moisture Retrievals from Remote Sensing Data , 2015, Remote. Sens..

[131]  Weimin Ju,et al.  Satellite sun‐induced chlorophyll fluorescence detects early response of winter wheat to heat stress in the Indian Indo‐Gangetic Plains , 2018, Global change biology.

[132]  Yuxin Miao,et al.  Combining chlorophyll meter readings and high spatial resolution remote sensing images for in-season site-specific nitrogen management of corn , 2008, Precision Agriculture.

[133]  Aiman Soliman,et al.  Remote Sensing of Soil Moisture in Vineyards Using Airborne and Ground-Based Thermal Inertia Data , 2013, Remote. Sens..

[134]  Rattan Lal,et al.  A techno-environmental overview of a corn stover biomass feedstock supply chain for cellulosic biorefineries , 2017 .

[135]  A. Alaoui,et al.  Mapping soil compaction – A review , 2018, Current Opinion in Environmental Science & Health.

[136]  A. J. Stern,et al.  Application of MODIS derived parameters for regional crop yield assessment , 2005 .

[137]  WhiteheadKen,et al.  Remote sensing of the environment with small unmanned aircraft systems (UASs), part 1: a review of progress and challenges1 , 2014 .

[138]  L. Plümer,et al.  Development of spectral indices for detecting and identifying plant diseases , 2013 .

[139]  Liping Jin,et al.  The estimation of crop emergence in potatoes by UAV RGB imagery , 2019, Plant Methods.