Emodin ameliorates renal fibrosis in rats via TGF-β1/Smad signaling pathway and function study of Smurf 2

[1]  S. Zhuang,et al.  Enhancer of Zeste Homolog 2 Inhibition Attenuates Renal Fibrosis by Maintaining Smad7 and Phosphatase and Tensin Homolog Expression. , 2016, Journal of the American Society of Nephrology.

[2]  H. Tammen,et al.  The dipeptidyl peptidase inhibitor linagliptin and the angiotensin II receptor blocker telmisartan show renal benefit by different pathways in rats with 5/6 nephrectomy. , 2016, Kidney international.

[3]  C. Zheng,et al.  Hepatoprotective activity of total iridoid glycosides isolated from Paederia scandens (lour.) Merr. var. tomentosa. , 2015, Journal of ethnopharmacology.

[4]  Jie Zhang,et al.  Lefty-1 alleviates TGF-β1-induced fibroblast–myofibroblast transdifferentiation in NRK-49F cells , 2015, Drug design, development and therapy.

[5]  Baoxue Yang,et al.  The Effect of cAMP-PKA Activation on TGF-β1-Induced Profibrotic Signaling , 2015, Cellular Physiology and Biochemistry.

[6]  J. Massagué,et al.  Structural determinants of Smad function in TGF-β signaling. , 2015, Trends in biochemical sciences.

[7]  Shih-Ming Huang,et al.  Emodin modulates epigenetic modifications and suppresses bladder carcinoma cell growth , 2015, Molecular carcinogenesis.

[8]  Y. Kuang,et al.  Emodin plays an interventional role in epileptic rats via multidrug resistance gene 1 (MDR1). , 2015, International journal of clinical and experimental pathology.

[9]  A. Qian,et al.  Emodin has a protective effect in cases of severe acute pancreatitis via inhibition of nuclear factor‑κB activation resulting in antioxidation. , 2015, Molecular medicine reports.

[10]  T. Kang,et al.  Emodin attenuates A23187-induced mast cell degranulation and tumor necrosis factor-α secretion through protein kinase C and IκB kinase 2 signaling. , 2014, European journal of pharmacology.

[11]  Xiao-ming Meng,et al.  Role of the TGF-β/BMP-7/Smad pathways in renal diseases. , 2013, Clinical science.

[12]  Mingxia Xiong,et al.  The miR-200 family regulates TGF-β1-induced renal tubular epithelial to mesenchymal transition through Smad pathway by targeting ZEB1 and ZEB2 expression. , 2012, American journal of physiology. Renal physiology.

[13]  W. Kong,et al.  Hepatotoxicity or Hepatoprotection? Pattern Recognition for the Paradoxical Effect of the Chinese Herb Rheum palmatum L. in Treating Rat Liver Injury , 2011, PloS one.

[14]  Koichi Matsumoto,et al.  Treatment with valsartan stimulates endothelial progenitor cells and renal label-retaining cells in hypertensive rats , 2011, Journal of hypertension.

[15]  J. López-Novoa,et al.  Common pathophysiological mechanisms of chronic kidney disease: therapeutic perspectives. , 2010, Pharmacology & therapeutics.

[16]  T. Hewitson Renal tubulointerstitial fibrosis: common but never simple. , 2009, American journal of physiology. Renal physiology.

[17]  S. Johri,et al.  Emodin reverses CCl4 induced hepatic cytochrome P450 (CYP) enzymatic and ultrastructural changes: The in vivo evidence , 2009, Hepatology research : the official journal of the Japan Society of Hepatology.

[18]  M. Kitagawa,et al.  Down-regulation of Smad7 expression by ubiquitin-dependent degradation contributes to renal fibrosis in obstructive nephropathy in mice. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[19]  Hoi-Seon Lee,et al.  Emodin isolated from Cassia obtusifolia (Leguminosae) seed shows larvicidal activity against three mosquito species. , 2003, Journal of agricultural and food chemistry.

[20]  H. Lan Tubular epithelial-myofibroblast transdifferentiation mechanisms in proximal tubule cells , 2003, Current opinion in nephrology and hypertension.

[21]  J. Wrana,et al.  TGF-β induces assembly of a Smad2–Smurf2 ubiquitin ligase complex that targets SnoN for degradation , 2001, Nature Cell Biology.

[22]  M. Arévalo,et al.  Up-regulation of endoglin, a TGF-beta-binding protein, in rats with experimental renal fibrosis induced by renal mass reduction. , 2001, Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association.

[23]  A. Fogo,et al.  Progression and potential regression of glomerulosclerosis. , 2001, Kidney international.

[24]  R. Derynck,et al.  Regulation of Smad degradation and activity by Smurf2, an E3 ubiquitin ligase. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[25]  J. Wrana,et al.  Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGF beta receptor for degradation. , 2000, Molecular cell.

[26]  Xia Lin,et al.  Smurf2 Is a Ubiquitin E3 Ligase Mediating Proteasome-dependent Degradation of Smad2 in Transforming Growth Factor-β Signaling* 210 , 2000, The Journal of Biological Chemistry.

[27]  J. Wrana Regulation of Smad Activity , 2000, Cell.

[28]  H. Ono,et al.  Nephrosclerosis and hypertension. , 1997, The Medical clinics of North America.

[29]  C. Heldin,et al.  Identification of Smad7, a TGFβ-inducible antagonist of TGF-β signalling , 1997, Nature.

[30]  M. Sporn,et al.  Suppression of experimental glomerulonephritis by antiserum against transforming growth factor β1 , 1990, Nature.

[31]  W. Keane,et al.  Mesangial immune injury, hypertension, and progressive glomerular damage in Dahl rats. , 1984, Kidney international.

[32]  Maria João Pires,et al.  Pathophysiological Mechanisms of Renal Fibrosis: A Review of Animal Models and Therapeutic Strategies. , 2017, In vivo.

[33]  A. Miyazaki,et al.  Hic-5 deficiency attenuates the activation of hepatic stellate cells and liver fibrosis through upregulation of Smad7 in mice. , 2016, Journal of hepatology.

[34]  K. Konishi,et al.  Significance of tubulointerstitial lesions in biopsy specimens of glomerulonephritic patients. , 1989, American journal of nephrology.