On the Automorphism Groups of Finite Multitype Models in $$\mathbb C^n$$Cn

[1]  Ben Zhang,et al.  On h-extendible domains and associated models , 2016 .

[2]  F. Meylan,et al.  Higher order symmetries of real hypersurfaces in $\Bbb C^3.$ , 2015, 1508.02260.

[3]  Kang-Tae Kim,et al.  Positivity and Completeness of Invariant Metrics , 2014, 1411.2753.

[4]  D. Zaitsev,et al.  Chern-Moser operators and polynomial models in CR geometry , 2014 .

[5]  R. Shafikov,et al.  Critical sets of proper holomorphic mappings , 2014, 1402.0414.

[6]  Mai Anh Duc,et al.  On the Automorphism Groups of Models in ℂ2$\mathbb {C}^{2}$ , 2013, 1304.2843.

[7]  Andreea C. Nicoara,et al.  On the Relationship between D’Angelo $$q$$q-Type and Catlin $$q$$q-Type , 2013, 1302.2294.

[8]  Kang-Tae Kim,et al.  On the tangential holomorphic vector fields vanishing at an infinite type point , 2012, 1206.4132.

[9]  M. Kolář The Catlin Multitype and Biholomorphic Equivalence of Models , 2009, 0905.2529.

[10]  S. Krantz,et al.  Domains with Non-Compact Automorphism Group: A Survey☆ , 1997, math/9612201.

[11]  S. Krantz,et al.  Examples of domains with non-compact automorphism groups , 1996, math/9602201.

[12]  S. Krantz,et al.  Reinhardt domains with non-compact automorphism groups , 1995, math/9510205.

[13]  F. Berteloot CHARACTERIZATION OF MODELS IN C2 BY THEIR AUTOMORPHISM GROUPS , 1994 .

[14]  D. Catlin Boundary invariants of pseudoconvex domains , 1984 .

[15]  S. Bell,et al.  A simplification and extension of Fefferman's theorem on biholomorphic mappings , 1980 .

[16]  B. Wong Characterization of the unit ball in ℂn by its automorphism group , 1977 .

[17]  L. Nirenberg,et al.  A pseudo-convex domain not admitting a holomorphic support function , 1973 .

[18]  G. Herbort On the Bergman distance on model domains in ℂⁿ , 2016 .

[19]  H. Gaussier Tautness and complete hyperbolicity of domains in ℂⁿ , 1999 .

[20]  R. Krantz TAUTNESS AND COMPLETE HYPERBOLICITY OF DOMAINS IN C , 1998 .

[21]  H. Gaussier Characterization of convex domains with noncompact automorphism group. , 1997 .

[22]  Jean-Pierre Rosay Sur une caractérisation de la boule parmi les domaines de ${\mathbb {C}}^n$ par son groupe d’automorphismes , 1979 .