Degenerate Grazing Bifurcations in a Simple Bilinear Oscillator

Degenerate grazing bifurcation occurring in a simple bilinear oscillator, namely the limit discontinuous case of the smooth and discontinuous (SD) oscillator, is investigated by numerical simulations. The unperturbed system has a saddle-like singularity at the origin with two periodic orbits grazing at the same point. The matrix in the leading-order truncation of the Poincare map at a grazing bifurcation for either of the two periodic orbits has a zero eigenvalue. Our numerical experiments suggest that the near-grazing dynamics are much more complicated than previously found. The results obtained in this paper is expected to be useful in developing analytical methods of this type of degenerate grazing bifurcations.

[1]  Celso Grebogi,et al.  Archetypal oscillator for smooth and discontinuous dynamics. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  C. Budd,et al.  Review of ”Piecewise-Smooth Dynamical Systems: Theory and Applications by M. di Bernardo, C. Budd, A. Champneys and P. 2008” , 2020 .

[3]  Tian Rui-Lan,et al.  Hopf Bifurcations for the Recently Proposed Smooth-and-Discontinuous Oscillator , 2010 .

[4]  Albert C. J. Luo,et al.  Discontinuous Dynamical Systems , 2012 .

[5]  S. Billings,et al.  Analysis of bilinear oscillators under harmonic loading using nonlinear output frequency response functions , 2007 .

[6]  Arne Nordmark,et al.  Non-periodic motion caused by grazing incidence in an impact oscillator , 1991 .

[7]  Ekaterina Pavlovskaia,et al.  Singularities in soft-impacting systems , 2012 .

[8]  Michal Fečkan,et al.  Topological Degree Approach to Bifurcation Problems , 2008 .

[9]  Giles W Hunt,et al.  A general theory of elastic stability , 1973 .

[10]  H. Dankowicz,et al.  Analysis of grazing bifurcations of quasiperiodic system attractors , 2006 .

[11]  Alan R. Champneys,et al.  Grazing Bifurcations and Chaos in the Dynamics of a Hydraulic Damper with Relief Valves , 2005, SIAM J. Appl. Dyn. Syst..

[12]  Harry Dankowicz,et al.  Continuous and discontinuous grazing bifurcations in impacting oscillators , 2006 .

[13]  Ekaterina Pavlovskaia,et al.  Invisible grazings and dangerous bifurcations in impacting systems: the problem of narrow-band chaos. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  Shaopu Yang,et al.  The codimension-two bifurcation for the recent proposed SD oscillator , 2009 .

[15]  M. Kunze Non-Smooth Dynamical Systems , 2000 .

[16]  Alan R. Champneys,et al.  Normal form maps for grazing bifurcations in n -dimensional piecewise-smooth dynamical systems , 2001 .

[17]  Celso Grebogi,et al.  Piecewise linear approach to an archetypal oscillator for smooth and discontinuous dynamics , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[18]  Harry Dankowicz,et al.  Near-grazing Dynamics in Tapping-mode Atomic-force Microscopy , 2007 .

[19]  田瑞兰,et al.  Hopf Bifurcations for the Recently Proposed Smooth-and-Discontinuous Oscillator , 2010 .

[20]  H. Dankowicz,et al.  On the origin and bifurcations of stick-slip oscillations , 2000 .

[21]  Michal Fečkan,et al.  Bifurcation and Chaos in Discontinuous and Continuous Systems , 2011 .

[22]  A. Nordmark,et al.  Two-parameter nonsmooth grazing bifurcations of limit cycles: classification and open problems , 2005 .

[23]  D. Chillingworth Dynamics of an impact oscillator near a degenerate graze , 2010, 1005.3286.

[24]  Harry Dankowicz,et al.  Unfolding degenerate grazing dynamics in impact actuators , 2006 .

[25]  Alan R. Champneys,et al.  Two-Parameter Discontinuity-Induced bifurcations of Limit Cycles: Classification and Open Problems , 2006, Int. J. Bifurc. Chaos.

[26]  M. di Bernardo,et al.  Two-parameter nonsmooth bifurcations of limit cycles: classification and open problems , 2005 .

[27]  Jan Awrejcewicz,et al.  Smooth and Nonsmooth High Dimensional Chaos and the Melnikov-Type Methods , 2007 .

[28]  Arne Nordmark,et al.  On normal form calculations in impact oscillators , 2000, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[29]  H. Dankowicz,et al.  Control of near-grazing dynamics in impact oscillators , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[30]  Alessandro Colombo,et al.  Bifurcations of piecewise smooth flows: Perspectives, methodologies and open problems , 2012 .

[31]  Harry Dankowicz,et al.  Degenerate discontinuity-induced bifurcations in tapping-mode atomic-force microscopy , 2010 .

[32]  Celso Grebogi,et al.  The limit case response of the archetypal oscillator for smooth and discontinuous dynamics , 2008 .

[33]  Qingjie Cao,et al.  Resonances of the SD oscillator due to the discontinuous phase , 2011 .

[34]  James D. Meiss,et al.  Aspects of bifurcation theory for piecewise-smooth, continuous systems , 2010, 1006.4123.

[35]  Harry Dankowicz,et al.  Low-velocity impacts of quasiperiodic oscillations , 2002 .

[36]  Jan Awrejcewicz,et al.  Bifurcation and Chaos , 1995 .

[37]  Ekaterina Pavlovskaia,et al.  Complex Dynamics of Bilinear oscillator Close to Grazing , 2010, Int. J. Bifurc. Chaos.

[38]  Harry Dankowicz,et al.  Co-dimension-Two Grazing Bifurcations in Single-Degree-of-Freedom Impact Oscillators , 2006 .

[39]  Yang Xin-Wei,et al.  Dynamic Analysis of the Smooth-and-Discontinuous Oscillator under Constant Excitation , 2012 .

[40]  Harry Dankowicz,et al.  Local analysis of co-dimension-one and co-dimension-two grazing bifurcations in impact microactuators , 2005 .

[41]  Grebogi,et al.  Grazing bifurcations in impact oscillators. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[42]  A. Nordmark Universal limit mapping in grazing bifurcations , 1997 .

[43]  Ekaterina Pavlovskaia,et al.  Bifurcation analysis of an impact oscillator with a one-sided elastic constraint near grazing , 2010 .

[44]  Yuri A. Kuznetsov,et al.  An event-driven method to simulate Filippov systems with accurate computing of sliding motions , 2008, TOMS.

[45]  O. Makarenkov,et al.  Dynamics and bifurcations of nonsmooth systems: A survey , 2012 .