Robust best-fit planes from geospatial data

Total least squares regression is a reliable and efficient way to analyze the geometry of a best-fit plane through georeferenced data points. The suitability of the input data, and the goodness of fit of the data points to the best-fit plane are considered in terms of their dimensionality, and they are quantified using two parameters involving the minimum and intermediate eigenvalues from the regression, as well as the spatial precision of the data.

[1]  Z. Berger Geologic stereo mapping of geologic structures with SPOT satellite data , 1993 .

[2]  M. Huysmans,et al.  Multi-scale three-dimensional distribution of fracture- and igneous intrusion-controlled hydrothermal dolomite from digital outcrop model, Latemar platform, Dolomites, northern Italy , 2015 .

[3]  R. Holdsworth,et al.  3D characterization of fracture systems using Terrestrial Laser Scanning: an example from the Lewisian basement of NW Scotland , 2015, Special Publications.

[4]  Carl Friedrich Gauss,et al.  Theoria Motvs Corporvm Coelestivm In Sectionibvs Conicis Solem Ambientivm , 2011 .

[5]  O. Fernández,et al.  Obtaining a best fitting plane through 3D georeferenced data , 2005 .

[6]  I. Trinks,et al.  Unlocking the spatial dimension: digital technologies and the future of geoscience fieldwork , 2005, Journal of the Geological Society.

[7]  Adrien-Marie Legendre,et al.  Nouvelles méthodes pour la détermination des orbites des comètes , 1970 .

[8]  I. Jolliffe Principal Component Analysis , 2002 .

[9]  Sabine Van Huffel,et al.  Overview of total least-squares methods , 2007, Signal Process..

[10]  T. Seers,et al.  Comparison of digital outcrop and conventional data collection approaches for the characterization of naturally fractured reservoir analogues , 2013 .

[11]  D. Anderson,et al.  Geologic Stereo Mapping of Geologic Structures with SPOT Satellite Data: Geologic Note (1) , 1992 .

[12]  Francis L. Richards,et al.  Industrial Structural Geology: Principles, Techniques and Integration , 2015 .

[13]  R. J. Adcock Note on the Method of Least Squares , 1877 .

[14]  Clive A. Boulter Four Dimensional Analysis of Geological Maps: Techniques of Interpretation , 1989 .

[15]  Kenneth J. W. McCaffrey,et al.  Quantitative analysis and visualization of nonplanar fault surfaces using terrestrial laser scanning (LIDAR)—The Arkitsa fault, central Greece, as a case study , 2009 .

[16]  Gene H. Golub,et al.  An analysis of the total least squares problem , 1980, Milestones in Matrix Computation.

[17]  John R. Sturgul,et al.  The best plane through data , 1970 .

[18]  T. W. Anderson Estimating Linear Statistical Relationships , 1984 .

[20]  R. Swennen,et al.  Mechanical stratigraphy and (palaeo-) karstification of the Murge area (Apulia, southern Italy) , 2012 .

[21]  Karl Pearson F.R.S. LIII. On lines and planes of closest fit to systems of points in space , 1901 .

[22]  T. Rabbani,et al.  Accuracy analysis of the Leica HDS3000 and feasibility of tunnel deformation monitoring , 2005 .

[23]  Richard J. Lisle,et al.  Geological Structures and Maps: A Practical Guide , 1996 .

[24]  Richard R. Jones,et al.  Characterization of fluvial architectural elements using a three-dimensional outcrop data set: Escanilla braided system, South-Central Pyrenees, Spain , 2007 .

[25]  Describing the dimensionality of geospatial data in the earth sciences— Recommendations for nomenclature , 2008 .

[26]  O. Stephansson,et al.  Measuring fracture orientation at exposed rock faces by using a non-reflector total station , 2001 .

[27]  Bart De Moor,et al.  Identification of influential observations on total least squares estimates , 2002 .

[28]  Christophe Voisin,et al.  High resolution 3D laser scanner measurements of a strike‐slip fault quantify its morphological anisotropy at all scales , 2006, 0801.0544.

[29]  S. Robson,et al.  Straightforward reconstruction of 3D surfaces and topography with a camera: Accuracy and geoscience application , 2012 .

[30]  Nigel Woodcock,et al.  Specification of fabric shapes using an eigenvalue method , 1977 .

[31]  W. Griffith,et al.  Fault Roughness at Seismogenic Depths from LIDAR and Photogrammetric Analysis , 2011 .

[32]  Samuel T. Thiele,et al.  Ground-based and UAV-Based photogrammetry: A multi-scale, high-resolution mapping tool for structural geology and paleoseismology , 2014 .

[33]  Richard R. Jones,et al.  A cost-efficient solution to true color terrestrial laser scanning , 2008 .

[34]  John F. Ferguson,et al.  Outcrop fracture characterization using terrestrial laser scanners: Deep-water Jackfork sandstone at big rock quarry, Arkansas , 2008 .

[35]  Xueming Xu,et al.  Digital Geologic Mapping of the Ferron Sandstone, Muddy Creek, Utah, with GPS and Reflectorless Laser Rangefinders , 2001, GPS Solutions.

[36]  Jamie K. Pringle,et al.  3D high-resolution digital models of outcrop analogue study sites to constrain reservoir model uncertainty: an example from Alport Castles, Derbyshire, UK , 2004, Petroleum Geoscience.

[37]  S. Mitra,et al.  Remote surface mapping using orthophotos and geologic maps draped over digital elevation models: Application to the Sheep Mountain anticline, Wyoming , 2004 .

[38]  Louise H. Kellogg,et al.  From outcrop to flow simulation: Constructing discrete fracture models from a LIDAR survey , 2011 .

[39]  David Green,et al.  Estimating Bedding Orientation From High-Resolution Digital Elevation Models , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[40]  H. Hotelling Analysis of a complex of statistical variables into principal components. , 1933 .

[41]  R. J. Adcock A Problem in Least Squares , 1878 .