A CD133-AKT-Wnt signaling axis drives glioblastoma brain tumor-initiating cells

[1]  Act Investigators Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII-expressing glioblastoma (ACT IV): a randomised, double-blind, international phase 3 trial , 2017 .

[2]  Richard A. Moore,et al.  Fate mapping of human glioblastoma reveals an invariant stem cell hierarchy , 2017, Nature.

[3]  A. Toker,et al.  AKT/PKB Signaling: Navigating the Network , 2017, Cell.

[4]  Ning Liu,et al.  Epigenetic Activation of WNT5A Drives Glioblastoma Stem Cell Differentiation and Invasive Growth , 2016, Cell.

[5]  P. Santisteban,et al.  ß-catenin signaling is required for RAS-driven thyroid cancer through PI3K activation , 2016, Oncotarget.

[6]  Paul S Mischel,et al.  Single-Cell Phosphoproteomics Resolves Adaptive Signaling Dynamics and Informs Targeted Combination Therapy in Glioblastoma. , 2016, Cancer cell.

[7]  R. Vernhout,et al.  Single-agent bevacizumab or lomustine versus a combination of bevacizumab plus lomustine in patients with recurrent glioblastoma (BELOB trial): a randomised controlled phase 2 trial. , 2014, The Lancet. Oncology.

[8]  Shawn M. Gillespie,et al.  Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma , 2014, Science.

[9]  D. Haussler,et al.  The Somatic Genomic Landscape of Glioblastoma , 2013, Cell.

[10]  C. Ishioka,et al.  The expression status of CD133 is associated with the pattern and timing of primary glioblastoma recurrence. , 2013, Neuro-oncology.

[11]  Simon Kasif,et al.  An aberrant transcription factor network essential for Wnt signaling and stem cell maintenance in glioblastoma. , 2013, Cell reports.

[12]  Y. Liu,et al.  Activation of PI3K/Akt pathway by CD133-p85 interaction promotes tumorigenic capacity of glioma stem cells , 2013, Proceedings of the National Academy of Sciences.

[13]  L. Liau,et al.  Recurrent somatic mutation of FAT1 in multiple human cancers leads to aberrant Wnt activation , 2013, Nature Genetics.

[14]  A. Gingras,et al.  Regulation of CD133 by HDAC6 promotes β-catenin signaling to suppress cancer cell differentiation. , 2012, Cell reports.

[15]  J. Huse,et al.  Dishevelled 2 signaling promotes self-renewal and tumorigenicity in human gliomas. , 2011, Cancer research.

[16]  K. Aldape,et al.  Nuclear PKM2 regulates β-catenin transactivation upon EGFR activation , 2011, Nature.

[17]  W. Yung,et al.  FoxM1 promotes β-catenin nuclear localization and controls Wnt target-gene expression and glioma tumorigenesis. , 2011, Cancer cell.

[18]  C. Miracco,et al.  β-catenin and Gli1 are prognostic markers in glioblastoma , 2011, Cancer biology & therapy.

[19]  Li-ying Zhang,et al.  Reduced β-catenin Expression is Associated with Good Prognosis in Astrocytoma , 2010, Pathology & Oncology Research.

[20]  Yonghong Xiao,et al.  PLAGL2 regulates Wnt signaling to impede differentiation in neural stem cells and gliomas. , 2010, Cancer cell.

[21]  R. Nusse,et al.  Lentiviral Vectors to Probe and Manipulate the Wnt Signaling Pathway , 2010, PloS one.

[22]  S. Gabriel,et al.  Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. , 2010, Cancer cell.

[23]  S. Ng,et al.  Phosphatidylinositol 3-Kinase Signaling Does Not Activate the Wnt Cascade , 2009, The Journal of Biological Chemistry.

[24]  K. Aldape,et al.  EGF-induced ERK activation promotes CK2-mediated disassociation of alpha-Catenin from beta-Catenin and transactivation of beta-Catenin. , 2009, Molecular cell.

[25]  B. Doble,et al.  GSK-3 is a master regulator of neural progenitor homeostasis , 2009, Nature Neuroscience.

[26]  P. Kearns,et al.  Expression of CD133 on leukemia-initiating cells in childhood ALL. , 2009, Blood.

[27]  E. Holland,et al.  Glioma Formation, Cancer Stem Cells, and Akt Signaling , 2008, Stem Cell Reviews.

[28]  P. Lichter,et al.  Stem Cell Marker CD133 Affects Clinical Outcome in Glioma Patients , 2008, Clinical Cancer Research.

[29]  C. Heeschen,et al.  Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. , 2007, Cell stem cell.

[30]  J. Dick,et al.  A human colon cancer cell capable of initiating tumour growth in immunodeficient mice , 2007, Nature.

[31]  R. Henkelman,et al.  Identification of human brain tumour initiating cells , 2004, Nature.

[32]  Cynthia Hawkins,et al.  Identification of a cancer stem cell in human brain tumors. , 2003, Cancer research.

[33]  G. Fuller,et al.  Ink4a-Arf loss cooperates with KRas activation in astrocytes and neural progenitors to generate glioblastomas of various morphologies depending on activated Akt. , 2002, Cancer research.

[34]  Anjen Chenn,et al.  Regulation of Cerebral Cortical Size by Control of Cell Cycle Exit in Neural Precursors , 2002, Science.

[35]  L. Swenson,et al.  Structure of GSK3β reveals a primed phosphorylation mechanism , 2001, Nature Structural Biology.

[36]  S. Fukumoto,et al.  Akt Participation in the Wnt Signaling Pathway through Dishevelled* , 2001, The Journal of Biological Chemistry.

[37]  I. Weissman,et al.  Direct isolation of human central nervous system stem cells. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[38]  Eric C. Holland,et al.  Combined activation of Ras and Akt in neural progenitors induces glioblastoma formation in mice , 2000, Nature Genetics.

[39]  J. Kearney,et al.  AC133, a novel marker for human hematopoietic stem and progenitor cells. , 1997, Blood.

[40]  Hans Clevers,et al.  Activation of β-Catenin-Tcf Signaling in Colon Cancer by Mutations in β-Catenin or APC , 1997, Science.

[41]  L. Recht,et al.  Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII-expressing glioblastoma (ACT IV): a randomised, double-blind, international phase 3 trial. , 2017, The Lancet. Oncology.

[42]  W. Huttner,et al.  A frameshift mutation in prominin (mouse)-like 1 causes human retinal degeneration. , 2000, Human molecular genetics.