Process Analysis and Performance Assessment for Sheet Forming Processes

Process monitoring and controller performance assessment are essential tools for ensuring that manufacturing processes operate safely, predictably, meet quality targets and operate profitably. Efficient techniques for process analysis and controller assessment facilitates are important for identifying areas for process and control improvement. Sheetand film-forming processes pose special challenges for these techniques, because they often have periods of non-steady-state operation, and can exhibit both spatial and temporal variations. Existing process evaluation and analysis methodologies are oriented primarily for processes under steady operation, and focus on temporal variations. New tools are proposed to address limitations on the application of minimumvariance-based controller performance assessment to metal rolling processes. Extensions are proposed which address: 1) non-constant deadtime that arises from changes in rolling speed during startup, steady operation and wind down in the rolling process; 2) constraints on control actions; and 3) different sampling intervals for the manipulated variable input and the process output. The efficacy of the proposed extensions are demonstrated using an aluminum rolling mill and simulation examples. Singular Spectrum Analysis (SSA) is a promising technique for analyzing time series that decomposes data into a number of interpretable frequency components. i New filtering and spectral interpretations of SSA are proposed in this work, including a modification to the computational procedure that produces a filter with zerophase lag. Links between SSA are made to other signal processing and time series techniques. The potential for SSA in analyzing chemical manufacturing processes is demonstrated using an extended analysis of a two-tank process under periodic operation. An SSA-based approach is proposed for computing minimum-variance-based controller performance assessment, and as illustrated using an example. This technique has potential for providing more detailed diagnosis of elements causing poor controller performance. The effectiveness of a recently proposed two-dimensional SSA (2D-SSA) algorithm is investigated for the analysis of two-dimensional problems that frequently arise in sheet forming processes. The use and interpretation of this algorithm is demonstrated using two simple examples of rolling processes with known defects in the roll. 2D spectra are computed using the 2D-SSA algorithm, and are interpreted.

[1]  Wei Yu,et al.  Nonlinear control performance assessment in the presence of valve stiction , 2010 .

[2]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[3]  Søren Holdt Jensen,et al.  FIR filter representations of reduced-rank noise reduction , 1998, IEEE Trans. Signal Process..

[4]  Claude S. Lindquist Adaptive and Digital Signal Processing with Digital Filtering Applications , 1988 .

[5]  G. Wilson The Factorization of Matricial Spectral Densities , 1972 .

[6]  Sirish L. Shah,et al.  Performance Evaluation of two Industrial MPC Controllers , 2003 .

[7]  Biao Huang,et al.  Dynamic Modelling and Predictive Control in Solid Oxide Fuel Cells: First Principle and Data-Based Approaches: Huang/Dynamic Modelling and Predictive Control in Solid Oxide Fuel Cells: First Principle and Data-Based Approaches , 2013 .

[8]  W. Hsieh,et al.  Nonlinear multichannel singular spectrum analysis of the tropical Pacific climate variability using a neural network approach , 2002 .

[9]  Thomas J. Harris,et al.  Controller assessment for a class of non-linear systems , 2007 .

[10]  Marlize Barkhuizen,et al.  Analysis of process data with singular spectrum methods , 2003 .

[11]  Christos Georgakis,et al.  Disturbance detection and isolation by dynamic principal component analysis , 1995 .

[12]  Igor V. Florinsky,et al.  Filtering of Digital Terrain Models by Two-Dimensional Singular Spectrum Analysis , 2007 .

[13]  S. Joe Qin,et al.  A unified geometric approach to process and sensor fault identification and reconstruction : The unidimensional fault case , 1998 .

[14]  Yinyu Ye Interior-Point Polynomial Algorithms in Convex Programming (Y. Nesterov and A. Nemirovskii) , 1994, SIAM Rev..

[15]  Thomas J. Harris,et al.  Interpretations of multivariate performance assessment indices , 2009 .

[16]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[17]  L. Breuer Introduction to Stochastic Processes , 2022, Statistical Methods for Climate Scientists.

[18]  James A. Cadzow,et al.  Signal enhancement-a composite property mapping algorithm , 1988, IEEE Trans. Acoust. Speech Signal Process..

[19]  W. Larimore System Identification, Reduced-Order Filtering and Modeling via Canonical Variate Analysis , 1983, 1983 American Control Conference.

[20]  Anatoly Zhigljavsky,et al.  Forecasting UK Industrial Production with Multivariate Singular Spectrum Analysis , 2013 .

[21]  A. Zhigljavsky,et al.  Analysis of time series structure , 2013 .

[22]  Theodora Kourti,et al.  Statistical Process Control of Multivariate Processes , 1994 .

[23]  A. Walden,et al.  Spectral analysis for physical applications : multitaper and conventional univariate techniques , 1996 .

[24]  Michael Ghil,et al.  IDENTIFICATION AND RECONSTRUCTION OF OSCILLATORY MODES IN U.S. BUSINESS CYCLES USING MULTIVARIATE SINGULAR SPECTRUM ANALYSIS , 2011 .

[25]  V. Moskvina,et al.  Application of the singular spectrum analysis for change-point detection in time series , 2006 .

[26]  M. S. Bartlett,et al.  An introduction to stochastic processes, with special reference to methods and applications , 1955 .

[27]  Mohieddine Jelali,et al.  An overview of control performance assessment technology and industrial applications , 2006 .

[28]  A. J. Morris,et al.  An overview of multivariate statistical process control in continuous and batch process performance monitoring , 1996 .

[29]  William P. Heath,et al.  Application of basis functions to the cross-directional control of web processes , 1996 .

[30]  R. Cattell The Scree Test For The Number Of Factors. , 1966, Multivariate behavioral research.

[31]  Helmut Ltkepohl,et al.  New Introduction to Multiple Time Series Analysis , 2007 .

[32]  Maria Papadopouli,et al.  Singular spectrum analysis of traffic workload in a large-scale wireless lan , 2007, MSWiM '07.

[33]  Andrej Pázman,et al.  Nonlinear Regression , 2019, Handbook of Regression Analysis With Applications in R.

[34]  Tore Hägglund,et al.  Automatic detection of sluggish control loops , 1999 .

[35]  Stephen J. Wright,et al.  Conjugate Gradient Methods , 1999 .

[36]  Gwilym M. Jenkins,et al.  Time series analysis, forecasting and control , 1971 .

[37]  A. R. Crathorne,et al.  Economic Control of Quality of Manufactured Product. , 1933 .

[38]  C. K. Shum,et al.  Multichannel singular spectrum analysis of the gravity field data from GRACE satellites , 2010 .

[39]  D. Thomson,et al.  Spectrum estimation and harmonic analysis , 1982, Proceedings of the IEEE.

[40]  Michael Ghil,et al.  Gap filling of solar wind data by singular spectrum analysis , 2010 .

[41]  Michael Ghil,et al.  and reconstruction of oscillatory modes in U.S. business cycles using Multivariate Singular Spectrum Analysis , 2011 .

[42]  J. Stuart Hunter,et al.  The exponentially weighted moving average , 1986 .

[43]  Dean V. Neubauer Chemical Process Performance Evaluation , 2008, Technometrics.

[44]  Mohieddine Jelali Performance assessment of control systems in rolling mills – application to strip thickness and flatness control , 2007 .

[45]  Michael Ghil,et al.  Spatio-temporal filling of missing points in geophysical data sets , 2006 .

[46]  Yuri A.W. Shardt,et al.  Determining the state of a process control system: Current trends and future challenges , 2012 .

[47]  Francis J. Doyle,et al.  The optimal control structure: an approach to measuring control-law nonlinearity , 1997 .

[48]  Yurii Nesterov,et al.  Interior-point polynomial algorithms in convex programming , 1994, Siam studies in applied mathematics.

[49]  Fredrik Gustafsson,et al.  A segmentation‐based method for detection of stiction in control valves , 2003 .

[50]  C. T. Seppala,et al.  Recent Developments in Controller Performance Monitoring and Assessment Techniques , 2002 .

[51]  H. Hotelling Relations Between Two Sets of Variates , 1936 .

[52]  William W. S. Wei,et al.  Effect of systematic sampling on arima models , 1981 .

[53]  Klaus Fraedrich,et al.  Estimating the Dimensions of Weather and Climate Attractors , 1986 .

[54]  Nina F. Thornhill,et al.  Detection of multiple oscillations in control loops , 2003 .

[55]  William P. Heath,et al.  Orthogonal functions for cross-directional control of web forming processes , 1996, Autom..

[56]  Alexander Horch Condition Monitoring of Control Loops , 2000 .

[57]  T. Harris Optimal controllers for nonsymmetric and nonquadratic loss functions , 1992 .

[58]  Ali Cinar,et al.  Statistical process monitoring and disturbance diagnosis in multivariable continuous processes , 1996 .

[59]  Leo H. Chiang,et al.  Fault diagnosis in chemical processes using Fisher discriminant analysis, discriminant partial least squares, and principal component analysis , 2000 .

[60]  Michael J. Grimble,et al.  Controller performance benchmarking and tuning using generalised minimum variance control , 2002, Autom..

[61]  M. Ghil,et al.  Oscillatory modes of extended Nile River records (A.D. 622–1922) , 2005 .

[62]  William W. Hsieh,et al.  Nonlinear principal component analysis by neural networks , 2001 .

[63]  Biao Huang,et al.  Performance monitoring of SISO control loops subject to LTV disturbance dynamics: An improved LTI benchmark , 2006 .

[64]  Damien Uduehi,et al.  Process Control Performance Assessment: From Theory to Implementation , 2007 .

[65]  J. Macgregor,et al.  Monitoring batch processes using multiway principal component analysis , 1994 .

[66]  Francis Bernard Alt Economic design of control charts for correlated, multivariate observations , 1977 .

[67]  Theodore Alexandrov,et al.  A METHOD OF TREND EXTRACTION USING SINGULAR SPECTRUM ANALYSIS , 2008, 0804.3367.

[68]  M. Loutre,et al.  Spectral analysis of climate data , 1996 .

[69]  Biao Huang,et al.  System Identification , 2000, Control Theory for Physicists.

[70]  Jie Zhang,et al.  Process performance monitoring using multivariate statistical process control , 1996 .

[71]  Sirish L. Shah,et al.  Good, bad or optimal? Performance assessment of multivariable processes , 1997, Autom..

[72]  George Carayannis,et al.  Physical interpretation of signal reconstruction from reduced rank matrices , 1991, IEEE Trans. Signal Process..

[73]  M. Guay,et al.  Effect of process nonlinearity on linear quadratic regulator performance , 2005 .

[74]  Carla Taricco,et al.  Isotopic record in a marine shallow-water core: Imprint of solar centennial cycles in the past 2 millennia , 2005 .

[75]  Tore Hägglund,et al.  Closed-loop performance monitoring using loop tuning , 2005 .

[76]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[77]  Alexander Horch A simple method for detection of stiction in control valves , 1999 .

[78]  Folake Olaleye,et al.  Industrial Applications of a Feedback Controller Performance Assessment of Time-Variant Processes , 2004 .

[79]  Nina F. Thornhill,et al.  Refinery-wide control loop performance assessment , 1999 .

[80]  M. Kramer Nonlinear principal component analysis using autoassociative neural networks , 1991 .

[81]  A. Cantoni,et al.  Eigenvalues and eigenvectors of symmetric centrosymmetric matrices , 1976 .

[82]  Robert Haber Nonlinear System Identification : Input-output Modeling Approach , 1999 .

[83]  Douglas C. Montgomery,et al.  A review of multivariate control charts , 1995 .

[84]  Sigurd Skogestad,et al.  Simple analytic rules for model reduction and PID controller tuning , 2003 .

[85]  Warren R. DeVries,et al.  Evaluation of process control effectiveness and diagnosis of variation in paper basis weight via multivariate time-series analysis , 1978 .

[86]  Anja Vogler,et al.  An Introduction to Multivariate Statistical Analysis , 2004 .

[87]  D. W. Clarke,et al.  Design of digital controllers for randomly disturbed systems , 1971 .

[88]  M. Ghil,et al.  Interdecadal oscillations and the warming trend in global temperature time series , 1991, Nature.

[89]  G.A. Dumont,et al.  Control loop performance monitoring , 1996, IEEE Trans. Control. Syst. Technol..

[90]  Chris Aldrich,et al.  Process system identification strategies based on the use of singular spectrum analysis , 2003 .

[91]  S. W. Roberts,et al.  Control Chart Tests Based on Geometric Moving Averages , 2000, Technometrics.

[92]  John F. MacGregor,et al.  Discrete stochastic control with input constraints , 1977 .

[93]  K. J. Ray Liu,et al.  Spectral estimation based on structured low rank matrix pencil , 1996, 1996 IEEE International Conference on Acoustics, Speech, and Signal Processing Conference Proceedings.

[94]  Bovas Abraham,et al.  Forecast efficiency of systematically sampled time series , 1982 .

[95]  Anatoly A. Zhigljavsky,et al.  Singular Spectrum Analysis for Time Series , 2013, International Encyclopedia of Statistical Science.

[96]  Richard F. Gunst,et al.  Applied Regression Analysis , 1999, Technometrics.

[97]  L. Telser,et al.  Discrete Samples and Moving Sums in Stationary Stochastic Processes , 1967 .

[98]  Richard D. Braatz,et al.  Cross-directional control of sheet and film processes , 2007, Autom..

[99]  Hamid Reza Mohseni,et al.  Localizing Heart Sounds in Respiratory Signals Using Singular Spectrum Analysis , 2011, IEEE Transactions on Biomedical Engineering.

[100]  Richard D. Braatz,et al.  Globally optimal robust control of large scale sheet and film processes , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[101]  S. Joe Qin,et al.  Statistical process monitoring: basics and beyond , 2003 .

[102]  T. Harris,et al.  Filtering and frequency interpretations of Singular Spectrum Analysis , 2010 .

[103]  Tore Hägglund,et al.  Detection and Diagnosis of Oscillation in Control Loops , 1997 .

[104]  Mohieddine Jelali,et al.  Control Performance Management in Industrial Automation , 2012 .

[105]  Michael Ghil,et al.  Adaptive filtering and maximum entropy spectra with application to changes in atmospheric angular momentum , 1991 .

[106]  Biao Huang,et al.  Performance assessment of control loops with time-variant disturbance dynamics , 2004 .

[107]  John E. Warnock,et al.  Dynamic modeling , 1977, SIGGRAPH.

[108]  David H. Schoellhamer,et al.  Singular spectrum analysis for time series with missing data , 2001 .

[109]  Thomas J. Harris,et al.  Performance assessment measures for univariate feedforward/feedback control , 1993 .

[110]  Biao Huang,et al.  Performance assessment of MIMO control systems with time-variant disturbance dynamics , 2008, Comput. Chem. Eng..

[111]  John F. MacGregor,et al.  Using On‐Line Process Data to Improve Quality: Challenges for Statisticians * , 1997 .

[112]  A. Zhigljavsky Singular Spectrum Analysis for time series: Introduction to this special issue , 2010 .

[113]  Jaganath Ramarathnam Control and monitoring of sheet and film forming processes , 2009 .

[114]  S. Joe Qin,et al.  Recent developments in multivariable controller performance monitoring , 2007 .

[115]  Dimitrios D. Thomakos,et al.  A review on singular spectrum analysis for economic and financial time series , 2010 .

[116]  R. Kumaresan,et al.  Estimating the parameters of exponentially damped sinusoids and pole-zero modeling in noise , 1982 .

[117]  K. Brewer Some consequences of temporal aggregation and systematic sampling for ARMA and ARMAX models , 1973 .

[118]  J. Macgregor,et al.  Monitoring and Diagnosing Process Control Performance: The Single-Loop Case , 1991, 1991 American Control Conference.

[119]  刘汉良 等距抽样(Systematic Sampling) , 1900 .

[120]  Anatoly A. Zhigljavsky,et al.  Singular spectrum analysis: methodology and application to economics data , 2009, J. Syst. Sci. Complex..

[121]  J. Willems,et al.  Application of structured total least squares for system identification and model reduction , 2005, IEEE Transactions on Automatic Control.

[122]  P.-G. Eriksson,et al.  Some aspects of control loop performance monitoring , 1994, 1994 Proceedings of IEEE International Conference on Control and Applications.

[123]  Biao Huang,et al.  Dynamic Modeling, Predictive Control and Performance Monitoring: A Data-driven Subspace Approach , 2008 .

[124]  John F. MacGregor,et al.  Multi-way partial least squares in monitoring batch processes , 1995 .

[125]  N. Golyandina,et al.  The "Caterpillar"-SSA method for analysis of time series with missing values , 2007 .

[126]  J. Elsner,et al.  Singular Spectrum Analysis: A New Tool in Time Series Analysis , 1996 .

[127]  Mario Bertero,et al.  Generalised information theory for inverse problems in signal processing , 1984 .

[128]  Sirish L. Shah,et al.  Multivariate Controller Performance Analysis : Methods , Applications and Challenges , 2002 .

[129]  C. T. Seppala,et al.  A review of performance monitoring and assessment techniques for univariate and multivariate control systems , 1999 .

[130]  S. Joe Qin,et al.  Control performance monitoring — a review and assessment , 1998 .

[131]  Igor V. Florinsky,et al.  Dynamics of soil salinity in the Canadian prairies: Application of singular spectrum analysis , 2009, Environ. Model. Softw..

[132]  Biao Huang,et al.  Feedforward and Feedback Controller Performance Assessment of Linear Time-Variant Processes , 2004 .

[133]  J. Kormylo,et al.  Two-pass recursive digital filter with zero phase shift , 1974 .

[134]  S. Joe Qin,et al.  MIMO control performance monitoring using left/right diagonal interactors , 2009 .

[135]  Louis L. Scharf,et al.  The SVD and reduced rank signal processing , 1991, Signal Process..

[136]  Vicente Oropeza,et al.  The Singular Spectrum Analysis method and its application to seismic data denoising and reconstruction , 2010 .

[137]  Sirish L. Shah,et al.  Practical Issues in Multivariable Feedback Control Performance Assessment , 1997 .

[138]  Petre Stoica,et al.  Decentralized Control , 2018, The Control Systems Handbook.

[139]  J. W. Tukey,et al.  The Measurement of Power Spectra from the Point of View of Communications Engineering , 1958 .

[140]  Andrew L. Rukhin,et al.  Analysis of Time Series Structure SSA and Related Techniques , 2002, Technometrics.

[141]  T. Harris Assessment of Control Loop Performance , 1989 .

[142]  Michael J. Piovoso,et al.  Process and controller performance monitoring: overview with industrial applications , 2003 .

[143]  Miroslav Kárný,et al.  Adaptive cross-direction control of paper basis weight , 1993, Autom..

[144]  James C. Hayton,et al.  Factor Retention Decisions in Exploratory Factor Analysis: a Tutorial on Parallel Analysis , 2004 .

[145]  Anatoly Zhigljavsky,et al.  Predicting daily exchange rate with singular spectrum analysis , 2010 .

[146]  David W. Bacon,et al.  Measure of closed-loop nonlinearity and interaction for nonlinear chemical processes , 1997 .

[147]  R. Vautard,et al.  Singular-spectrum analysis: a toolkit for short, noisy chaotic signals , 1992 .

[148]  Mark Bartlett,et al.  An Introduction to Stochastic Processes with Special Reference to Methods and Applications. , 1955 .

[149]  N. F. Thornhilla,et al.  Spectral principal component analysis of dynamic process data , 2002 .

[150]  J. Makhoul On the eigenvectors of symmetric Toeplitz matrices , 1981 .

[151]  Ari Ingimundarson,et al.  Dead-Time Compensation and Performance Monitoring in Process Control , 2003 .

[152]  Karel J. Keesman,et al.  System Identification: An Introduction , 2011 .

[153]  Clive W. J. Granger,et al.  Systematic sampling, temporal aggregation, seasonal adjustment, and cointegration theory and evidence , 1995 .

[154]  Bart De Moor,et al.  Total least squares for affinely structured matrices and the noisy realization problem , 1994, IEEE Trans. Signal Process..

[155]  Bruce Hannon,et al.  Dynamic Modeling , 1994, Springer US.

[156]  G. Plaut,et al.  Spells of Low-Frequency Oscillations and Weather Regimes in the Northern Hemisphere. , 1994 .

[157]  Guy A. Dumont,et al.  Cross-directional control on paper machines using gram polynomials , 1996, Autom..

[158]  Tore Hägglund,et al.  A Control-Loop Performance Monitor , 1995 .

[159]  Chris Aldrich,et al.  Classification of process dynamics with Monte Carlo singular spectrum analysis , 2003, Comput. Chem. Eng..

[160]  Geoffrey Ye Li,et al.  A parameter estimation scheme for damped sinusoidal signals based on low-rank Hankel approximation , 1997, IEEE Trans. Signal Process..

[161]  R. Plemmons,et al.  Structured low rank approximation , 2003 .

[162]  Wei Yu,et al.  Control performance assessment for nonlinear systems , 2010 .

[163]  Antonio Cantoni,et al.  Properties of the Eigenvectors of Persymmetric Matrices with Applications to Communication Theory , 1976, IEEE Trans. Commun..

[164]  I. Markovsky,et al.  Palindromic polynomials, time-reversible systems, and conserved quantities , 2008, 2008 16th Mediterranean Conference on Control and Automation.

[165]  Fang Fang,et al.  Minimum variance lower bound ratio based nonlinearity measure for closed loop systems , 2013 .

[166]  L. Schumaker Spline Functions: Basic Theory , 1981 .

[167]  Biao Huang,et al.  First Principle Modelling for Chemical Processes , 2012 .

[168]  Hossein Hassani,et al.  Singular Spectrum Analysis: Methodology and Comparison , 2021, Journal of Data Science.

[169]  K. J. Ray Liu,et al.  A structured low-rank matrix pencil for spectral estimation and system identification , 1998, Signal Process..

[170]  Maria Papadopouli,et al.  Trend forecasting based on Singular Spectrum Analysis of traffic workload in a large-scale wireless LAN , 2009, Perform. Evaluation.

[171]  Neil H. Timm,et al.  Multivariate Reduced-Rank Regression , 1999, Technometrics.

[172]  Wei Yu,et al.  A comparison of nonlinear control performance assessment techniques for nonlinear processes , 2012, The Canadian Journal of Chemical Engineering.

[173]  M. Sacchi,et al.  Simultaneous seismic data denoising and reconstruction via multichannel singular spectrum analysis , 2011 .

[174]  Eric R. Ziegel,et al.  Engineering Statistics , 2004, Technometrics.

[175]  T. J. Harris,et al.  Performance assessment of multivariable feedback controllers , 1996, Autom..

[176]  J. E. Jackson A User's Guide to Principal Components , 1991 .

[177]  Doreen Meier,et al.  Introduction To Stochastic Control Theory , 2016 .

[178]  W. L. Bialkowski Dreams versus reality: a view from both sides of the gap: manufacturing excellence with come only through engineering excellence , 1993 .

[179]  S. Wold Exponentially weighted moving principal components analysis and projections to latent structures , 1994 .

[180]  Thomas F. Edgar,et al.  PID control performance assessment: The single‐loop case , 2004 .

[181]  G. P. King,et al.  Extracting qualitative dynamics from experimental data , 1986 .

[182]  J. Kiefer,et al.  An Introduction to Stochastic Processes. , 1956 .

[183]  Biao Huang,et al.  Minimum Variance Control and Performance Assessment of Time-Variant Processes , 2000 .

[184]  Tore Hägglund Industrial implementation of on-line performance monitoring tools , 2005 .

[185]  Derrick J. Kozub CONTROLLER PERFORMANCE MONITORING AND DIAGNOSIS. INDUSTRIAL PERSPECTIVE , 2002 .

[186]  John F. MacGregor,et al.  Multivariate SPC charts for monitoring batch processes , 1995 .

[187]  C. T. Seppala,et al.  Time series methods for dynamic analysis of multiple controlled variables , 2002 .

[188]  John F. MacGregor,et al.  Optimal Choice of thesampling Interval for Discrete Process Control , 1976 .

[189]  S. Joe Qin,et al.  Subspace approach to multidimensional fault identification and reconstruction , 1998 .

[190]  Luis G. Bergh,et al.  Spatial control of sheet and film forming processes , 1987 .

[191]  Karl Johan Åström,et al.  Computer control of a paper machine: an application of linear stochastic control theory , 1967 .

[192]  William R. Cluett,et al.  Performance assessment using a model predictive control benchmark , 2004 .

[193]  Gregory E. Stewart Two dimensional loop shaping controller design for paper machine cross-directional processes , 2000 .

[194]  R. Vautard,et al.  Singular spectrum analysis in nonlinear dynamics, with applications to paleoclimatic time series , 1989 .

[195]  Dale E. Seborg,et al.  Controller performance assessment based on setpoint response data , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[196]  Nina F. Thornhill,et al.  DETECTION OF DISTRIBUTED OSCILLATIONS AND ROOT-CAUSE DIAGNOSIS , 2001 .

[197]  D. B. Preston Spectral Analysis and Time Series , 1983 .

[198]  Alf Isaksson,et al.  A modified index for control performance assessment , 1998, Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207).

[199]  Michael Ghil,et al.  ADVANCED SPECTRAL METHODS FOR CLIMATIC TIME SERIES , 2002 .

[200]  Peter Wellstead,et al.  Signal processing and control paradigms for industrial web and sheet manufacturing , 2000 .

[201]  D. Sornette,et al.  Data-adaptive wavelets and multi-scale singular-spectrum analysis , 1998, chao-dyn/9810034.

[202]  T. Soderstrom,et al.  On the achievable accuracy in stochastic control , 1978, 1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes.

[203]  Pascal Yiou,et al.  Using MSSA to determine explicitly the oscillatory dynamics of weakly nonlinear climate systems , 2005 .

[204]  Mohammed E. Ammar Cross-directional processes : modeling, identification and robust control , 2009 .

[205]  J. Edward Jackson,et al.  A User's Guide to Principal Components. , 1991 .

[206]  T. Harris,et al.  Performance assessment measures for univariate feedback control , 1992 .

[207]  S. Reddi,et al.  Eigenvector properties of Toeplitz matrices and their application to spectral analysis of time series , 1984 .

[208]  G. Reinsel,et al.  Multivariate Reduced-Rank Regression: Theory and Applications , 1998 .

[209]  A. Zhigljavsky,et al.  Forecasting European industrial production with singular spectrum analysis , 2009 .

[210]  Michael Ghil,et al.  Advanced spectral-analysis methods , 1997 .

[211]  Seshu Kumar Damarla,et al.  Multivariate Statistical Process Monitoring and Control , 2011 .

[212]  Biao Huang Performance assessment of processes with abrupt changes of disturbances , 1999 .

[213]  D. R. Salgado,et al.  Tool wear detection in turning operations using singular spectrum analysis , 2006 .

[214]  A. Izenman Reduced-rank regression for the multivariate linear model , 1975 .

[215]  Heikki N. Koivo,et al.  Performance metrics for web-forming processes , 2011 .

[216]  Shunlin Liang,et al.  Singular Spectrum Analysis for Filling Gaps and Reducing Uncertainties of MODIS Land Products , 2008, IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium.

[217]  Ali Cinar,et al.  Statistical process and controller performance monitoring. A tutorial on current methods and future directions , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[218]  Nina F. Thornhill,et al.  Practical solutions to multivariate feedback control performance assessment problem: reduced a priori knowledge of interactor matrices , 2005 .

[219]  P. Young,et al.  Time series analysis, forecasting and control , 1972, IEEE Transactions on Automatic Control.

[220]  Licesio J. Rodríguez-Aragón,et al.  Singular spectrum analysis for image processing , 2010 .