Condition Estimates for Pseudo-Arclength Continuation

We bound the condition number of the Jacobian in pseudo-arclength continuation problems, and we quantify the effect of this condition number on the linear system solution in a Newton-GMRES solve. Pseudo-arclength continuation solves parameter dependent nonlinear equations $G(u,\lambda) = 0$ by introducing a new parameter $s$, which approximates arclength, and viewing the vector $x = (u,\lambda)$ as a function of $s$. In this way simple fold singularities can be computed directly by solving a larger system $F(x,s) = 0$ by simple continuation in the new parameter $s$. It is known that the Jacobian $F_x$ of $F$ with respect to $x=(u,\lambda)$ is nonsingular if the path contains only regular points and simple fold singularities. We introduce a new characterization of simple folds in terms of the singular value decomposition, and we use it to derive a new bound for the norm of $F_x^{-1}$. We also show that the convergence rate of GMRES in a Newton step for $F(x,s)=0$ is essentially the same as that of the original problem $G(u,\lambda)=0$. In particular, we prove that the bounds on the degrees of the minimal polynomials of the Jacobians $F_x$ and $G_u$ differ by at most 2. We illustrate the effectiveness of our bounds with an example from radiative transfer theory.

[1]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[2]  Ilse C. F. Ipsen,et al.  GMRES and the minimal polynomial , 1996 .

[3]  Charalambos D. Aliprantis,et al.  Positive Operators , 2006 .

[4]  Yousef Saad,et al.  Hybrid Krylov Methods for Nonlinear Systems of Equations , 1990, SIAM J. Sci. Comput..

[5]  C. Kelley Iterative Methods for Linear and Nonlinear Equations , 1987 .

[6]  James M. Ortega,et al.  Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.

[7]  Ilse C. F. Ipsen,et al.  THE IDEA BEHIND KRYLOV METHODS , 1998 .

[8]  C. W. Gear,et al.  Equation-Free, Coarse-Grained Multiscale Computation: Enabling Mocroscopic Simulators to Perform System-Level Analysis , 2003 .

[9]  C. T. Kelley,et al.  GMRES and Integral Operators , 1996, SIAM J. Sci. Comput..

[10]  C. Kelley,et al.  Newton-Krylov solvers for time-steppers , 2004, math/0404374.

[11]  G. Rybicki Radiative transfer , 2019, Climate Change and Terrestrial Ecosystem Modeling.

[12]  C. Kelley Solving Nonlinear Equations with Newton's Method , 1987 .

[13]  Tony F. Chan,et al.  Arc-Length Continuation and Multigrid Techniques for Nonlinear Elliptic Eigenvalue Problems , 1982 .

[14]  C. T. Kelley,et al.  Solving nonlinear equations with Newton's method - fundamentals of algorithms , 2003 .

[15]  I. G. Kevrekidis,et al.  Enabling dynamic process simulators to perform alternative tasks: A time-stepper-based toolkit for computer-aided analysis , 2003 .

[16]  T. W. Mullikin Some probability distributions for neutron transport in a half-space , 1968 .

[17]  Yousef Saad,et al.  Convergence Theory of Nonlinear Newton-Krylov Algorithms , 1994, SIAM J. Optim..

[18]  C. Kelley Solution of the Chandrasekhar H‐equation by Newton’s Method , 1980 .

[19]  J. A. Kuznecov Elements of applied bifurcation theory , 1998 .

[20]  Antonios Armaou,et al.  Equation-free optimal switching policies for bistable reacting systems using coarse time-steppers , 2004 .

[21]  Willy Govaerts,et al.  Numerical methods for bifurcations of dynamical equilibria , 1987 .

[22]  B. Parlett The Symmetric Eigenvalue Problem , 1981 .

[23]  Ioannis G. Kevrekidis,et al.  Telescopic projective methods for parabolic differential equations , 2003 .

[24]  H. Schwetlick,et al.  Zur Lösung parameterabhängiger nichtlinearer Gleichungen mit singulären Jacobi-Matrizen , 1978 .

[25]  Werner C. Rheinboldt,et al.  Solution Fields of Nonlinear Equations and Continuation Methods , 1980 .

[26]  W. Rheinboldt Numerical analysis of parametrized nonlinear equations , 1986 .

[27]  R. D. Murphy,et al.  Iterative solution of nonlinear equations , 1994 .

[28]  C. T. Kelley,et al.  Mesh Independence of Matrix-Free Methods for Path Following , 1999, SIAM J. Sci. Comput..

[29]  Carl D. Meyer,et al.  Matrix Analysis and Applied Linear Algebra , 2000 .

[30]  Elizabeth A. Burroughs,et al.  LOCA 1.0 Library of Continuation Algorithms: Theory and Implementation Manual , 2002 .

[31]  I. Kevrekidis,et al.  "Coarse" stability and bifurcation analysis using time-steppers: a reaction-diffusion example. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[32]  C. W. Gear,et al.  'Coarse' integration/bifurcation analysis via microscopic simulators: Micro-Galerkin methods , 2002 .