Trans-species polymorphism in humans and the great apes is generally maintained by balancing selection that modulates the host immune response

[1]  D. Cooper,et al.  Mutations Causing Complex Disease May under Certain Circumstances Be Protective in an Epidemiological Sense , 2015, PloS one.

[2]  F. Bock,et al.  Poly(ADP-ribose) polymerase-13 and RNA regulation in immunity and cancer. , 2015, Trends in molecular medicine.

[3]  M. Vinkler,et al.  Trans-Species Polymorphism in Immune Genes: General Pattern or MHC-Restricted Phenomenon? , 2015, Journal of immunology research.

[4]  B. Wallner,et al.  Signatures of positive selection in the cis-regulatory sequences of the human oxytocin receptor (OXTR) and arginine vasopressin receptor 1a (AVPR1A) genes , 2015, BMC Evolutionary Biology.

[5]  Fernando A. Villanea,et al.  A General Model of Negative Frequency Dependent Selection Explains Global Patterns of Human ABO Polymorphism , 2015, PloS one.

[6]  P. Parham,et al.  Signature Patterns of MHC Diversity in Three Gombe Communities of Wild Chimpanzees Reflect Fitness in Reproduction and Immune Defense against SIVcpz , 2015, PLoS biology.

[7]  M. Clerici,et al.  Evolutionary insights into host–pathogen interactions from mammalian sequence data , 2015, Nature Reviews Genetics.

[8]  E. Riboli,et al.  Variation at ABO histo‐blood group and FUT loci and diffuse and intestinal gastric cancer risk in a European population , 2015, International journal of cancer.

[9]  J. Arthur,et al.  Single Nucleotide Differences (SNDs) Continue to Contaminate the dbSNP Database With Consequences for Human Genomics and Health , 2015, Human mutation.

[10]  J. C. Teixeira,et al.  Advantageous diversity maintained by balancing selection in humans. , 2014, Current opinion in genetics & development.

[11]  L. Quintana-Murci,et al.  The Red Queen's long race: human adaptation to pathogen pressure. , 2014, Current opinion in genetics & development.

[12]  J. C. Teixeira,et al.  Long-term balancing selection in LAD1 maintains a missense trans-species polymorphism in humans, chimpanzees and bonobos , 2014, bioRxiv.

[13]  N. Saitou,et al.  An integrative evolution theory of histo-blood group ABO and related genes , 2014, Scientific Reports.

[14]  Mingwang Zhang,et al.  Genetic diversity and differentiation of the rhesus macaque (Macaca mulatta) population in western Sichuan, China, based on the second exon of the major histocompatibility complex class II DQB (MhcMamu-DQB1) alleles , 2014, BMC Evolutionary Biology.

[15]  M. Plummer,et al.  Risk of advanced gastric precancerous lesions in Helicobacter pylori infected subjects is influenced by ABO blood group and cagA status , 2013, International journal of cancer.

[16]  M. Przeworski,et al.  Ancestry runs deeper than blood: The evolutionary history of ABO points to cryptic variation of functional importance , 2013, BioEssays : news and reviews in molecular, cellular and developmental biology.

[17]  Jiming Zhang,et al.  Inhibition of Hepatitis B Virus Replication by the Host Zinc Finger Antiviral Protein , 2013, PLoS pathogens.

[18]  Ilan Gronau,et al.  Genome-wide inference of natural selection on human transcription factor binding sites , 2013, Nature Genetics.

[19]  Peter Donnelly,et al.  Multiple Instances of Ancient Balancing Selection Shared Between Humans and Chimpanzees , 2013, Science.

[20]  P. Taberlet,et al.  Evolution of major histocompatibility complex class I and class II genes in the brown bear , 2012, BMC Evolutionary Biology.

[21]  Susan W. Margulis,et al.  The ABO blood group is a trans-species polymorphism in primates , 2012, Proceedings of the National Academy of Sciences of the United States of America.

[22]  Kevin E. Langergraber,et al.  Generation times in wild chimpanzees and gorillas suggest earlier divergence times in great ape and human evolution , 2012, Proceedings of the National Academy of Sciences.

[23]  L. Luján,et al.  Ovine TRIM5α Can Restrict Visna/Maedi Virus , 2012, Journal of Virology.

[24]  Albert J. Vilella,et al.  Insights into hominid evolution from the gorilla genome sequence , 2012, Nature.

[25]  N. Bresolin,et al.  A Trans-Specific Polymorphism in ZC3HAV1 Is Maintained by Long-Standing Balancing Selection and May Confer Susceptibility to Multiple Sclerosis , 2012, Molecular biology and evolution.

[26]  H. Risch Pancreatic cancer: Helicobacter pylori colonization, N‐Nitrosamine exposures, and ABO blood group , 2012, Molecular carcinogenesis.

[27]  Philipp W. Messer,et al.  Heterozygote advantage as a natural consequence of adaptation in diploids , 2011, Proceedings of the National Academy of Sciences.

[28]  R. Nielsen,et al.  Signatures of Environmental Genetic Adaptation Pinpoint Pathogens as the Main Selective Pressure through Human Evolution , 2011, PLoS genetics.

[29]  W. Getz,et al.  Adaptive molecular evolution of the Major Histocompatibility Complex genes, DRA and DQA, in the genus Equus , 2011, BMC Evolutionary Biology.

[30]  D. Pillay,et al.  Hare TRIM5α Restricts Divergent Retroviruses and Exhibits Significant Sequence Variation from Closely Related Lagomorpha TRIM5 Genes , 2010, Journal of Virology.

[31]  N. Bresolin,et al.  Long-term balancing selection maintains trans-specific polymorphisms in the human TRIM5 gene , 2010, Human Genetics.

[32]  D. Anstee,et al.  The relationship between blood groups and disease. , 2010, Blood.

[33]  Lewis G. Spurgin,et al.  How pathogens drive genetic diversity: MHC, mechanisms and misunderstandings , 2010, Proceedings of the Royal Society B: Biological Sciences.

[34]  Jeremiah D. Degenhardt,et al.  Targets of balancing selection in the human genome. , 2009, Molecular biology and evolution.

[35]  Geoffrey S. Tobias,et al.  Genome-wide association study identifies variants in the ABO locus associated with susceptibility to pancreatic cancer , 2009, Nature Genetics.

[36]  S. Miller,et al.  The role of infections in autoimmune disease , 2009, Clinical and experimental immunology.

[37]  N. Bresolin,et al.  The signature of long-standing balancing selection at the human defensin β-1 promoter , 2008, Genome Biology.

[38]  S. Sommer,et al.  Selection, diversity and evolutionary patterns of the MHC class II DAB in free-ranging Neotropical marsupials , 2008, BMC Genetics.

[39]  Michael Emerman,et al.  Positive Selection and Increased Antiviral Activity Associated with the PARP-Containing Isoform of Human Zinc-Finger Antiviral Protein , 2008, PLoS genetics.

[40]  A. Telenti,et al.  Antiretroviral Activity of Ancestral TRIM5α , 2007, Journal of Virology.

[41]  T. Schaller,et al.  An Active TRIM5 Protein in Rabbits Indicates a Common Antiviral Ancestor for Mammalian TRIM5 Proteins , 2007, Journal of Virology.

[42]  M. Emerman,et al.  Restriction of an Extinct Retrovirus by the Human TRIM5α Antiviral Protein , 2007, Science.

[43]  Ruchi M. Newman,et al.  Balancing selection and the evolution of functional polymorphism in Old World monkey TRIM5α , 2006, Proceedings of the National Academy of Sciences.

[44]  Nathan M. Young,et al.  Primate molecular divergence dates. , 2006, Molecular phylogenetics and evolution.

[45]  J. Altmann,et al.  Ancient polymorphism and functional variation in the primate MHC-DQA1 5′ cis-regulatory region , 2006, Proceedings of the National Academy of Sciences.

[46]  Timothy P. L. Smith,et al.  Isolation of an Active Lv1 Gene from Cattle Indicates that Tripartite Motif Protein-Mediated Innate Immunity to Retroviral Infection Is Widespread among Mammals , 2006, Journal of Virology.

[47]  David A. Sack,et al.  Blood Group, Immunity, and Risk of Infection with Vibrio cholerae in an Area of Endemicity , 2005, Infection and Immunity.

[48]  S. Sommer The importance of immune gene variability (MHC) in evolutionary ecology and conservation , 2005, Frontiers in Zoology.

[49]  Michael Emerman,et al.  Positive selection of primate TRIM5alpha identifies a critical species-specific retroviral restriction domain. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[50]  S. Goff,et al.  The Zinc Finger Antiviral Protein Directly Binds to Specific Viral mRNAs through the CCCH Zinc Finger Motifs , 2004, Journal of Virology.

[51]  P. Bieniasz Intrinsic immunity: a front-line defense against viral attack , 2004, Nature Immunology.

[52]  C. M. Owens,et al.  The cytoplasmic body component TRIM5α restricts HIV-1 infection in Old World monkeys , 2004, Nature.

[53]  Rob J. De Boer,et al.  MHC polymorphism under host-pathogen coevolution , 2004, Immunogenetics.

[54]  S. Goff,et al.  Inhibition of Retroviral RNA Production by ZAP, a CCCH-Type Zinc Finger Protein , 2002, Science.

[55]  W. Potts,et al.  MHC heterozygosity confers a selective advantage against multiple-strain infections , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[56]  Y. Satta,et al.  Mhc-DRB genes evolution in lemurs , 2002, Immunogenetics.

[57]  R. Bontrop,et al.  Extensive Mhc-DQB variation in humans and non-human primate species , 2002, Immunogenetics.

[58]  R. Ahkami,et al.  Linear IgA bullous dermatosis associated with vancomycin and disseminated varicella-zoster infection. , 2001, Cutis.

[59]  R. Burgeson,et al.  LAD-1, the linear IgA bullous dermatosis autoantigen, is a novel 120-kDa anchoring filament protein synthesized by epidermal cells. , 1996, The Journal of investigative dermatology.

[60]  S. Normark,et al.  Attachment of Helicobacter pylori to human gastric epithelium mediated by blood group antigens. , 1993, Science.

[61]  Henrik Clausen,et al.  Molecular genetic basis of the histo-blood group ABO system , 1990, Nature.

[62]  M. Nei,et al.  Allelic genealogy under overdominant and frequency-dependent selection and polymorphism of major histocompatibility complex loci. , 1990, Genetics.

[63]  H. Erlich,et al.  Ancient roots for polymorphism at the HLA-DQ alpha locus in primates. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[64]  J. Klein,et al.  MHC polymorphism pre-dating speciation , 1988, Nature.

[65]  M. Nei,et al.  Pattern of nucleotide substitution at major histocompatibility complex class I loci reveals overdominant selection , 1988, Nature.

[66]  J. Klein,et al.  Nucleotide sequences of chimpanzee MHC class I alleles: evidence for trans‐species mode of evolution. , 1988, The EMBO journal.

[67]  J. Klein Origin of major histocompatibility complex polymorphism: the trans-species hypothesis. , 1987, Human immunology.

[68]  Shamil Sunyaev,et al.  A limited role for balancing selection. , 2005, Trends in genetics : TIG.

[69]  J. Martinko,et al.  Primate ABO glycosyltransferases: Evidence for trans-species evolution , 2004, Immunogenetics.