Fast and stable nonconvex constrained distributed optimization: the ELLADA algorithm

Distributed optimization using multiple computing agents in a localized and coordinated manner is a promising approach for solving large-scale optimization problems, e.g., those arising in model predictive control (MPC) of large-scale plants. However, a distributed optimization algorithm that is computationally efficient, globally convergent, amenable to nonconvex constraints remains an open problem. In this paper, we combine three important modifications to the classical alternating direction method of multipliers for distributed optimization. Specifically, (1) an extra-layer architecture is adopted to accommodate nonconvexity and handle inequality constraints, (2) equality-constrained nonlinear programming (NLP) problems are allowed to be solved approximately, and (3) a modified Anderson acceleration is employed for reducing the number of iterations. Theoretical convergence of the proposed algorithm, named ELLADA, is established and its numerical performance is demonstrated on a large-scale NLP benchmark problem. Its application to distributed nonlinear MPC is also described and illustrated through a benchmark process system.

[1]  Henrik Sandberg,et al.  A Survey of Distributed Optimization and Control Algorithms for Electric Power Systems , 2017, IEEE Transactions on Smart Grid.

[2]  Bailin Deng,et al.  Accelerating ADMM for efficient simulation and optimization , 2019, ACM Trans. Graph..

[3]  Richard G. Baraniuk,et al.  Fast Alternating Direction Optimization Methods , 2014, SIAM J. Imaging Sci..

[4]  Yousef Saad,et al.  Two classes of multisecant methods for nonlinear acceleration , 2009, Numer. Linear Algebra Appl..

[5]  Panagiotis D. Christofides,et al.  Sequential and Iterative Architectures for Distributed Model Predictive Control of Nonlinear Process Systems , 2010 .

[6]  Xiaobo Yang,et al.  An inexact alternating direction method of multipliers with relative error criteria , 2017, Optim. Lett..

[7]  Bingsheng He,et al.  The direct extension of ADMM for multi-block convex minimization problems is not necessarily convergent , 2014, Mathematical Programming.

[8]  Eduardo Camponogara,et al.  Distributed model predictive control , 2002 .

[9]  Lorenz T. Biegler,et al.  On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming , 2006, Math. Program..

[10]  Shiqian Ma,et al.  On the Global Linear Convergence of the ADMM with MultiBlock Variables , 2014, SIAM J. Optim..

[11]  Guoqiang Hu,et al.  A Proximal Linearization-based Decentralized Method for Nonconvex Problems with Nonlinear Constraints , 2020, ArXiv.

[12]  Prodromos Daoutidis,et al.  Decomposing complex plants for distributed control: Perspectives from network theory , 2017, Comput. Chem. Eng..

[13]  Wang Yao,et al.  Approximate ADMM algorithms derived from Lagrangian splitting , 2017, Comput. Optim. Appl..

[14]  Zhi-Quan Luo,et al.  On the linear convergence of the alternating direction method of multipliers , 2012, Mathematical Programming.

[15]  Guoyin Li,et al.  Global Convergence of Splitting Methods for Nonconvex Composite Optimization , 2014, SIAM J. Optim..

[16]  J. M. Maestre,et al.  Distributed Model Predictive Control: An Overview and Roadmap of Future Research Opportunities , 2014, IEEE Control Systems.

[17]  Stephen P. Boyd,et al.  Anderson Accelerated Douglas-Rachford Splitting , 2019, SIAM J. Sci. Comput..

[18]  Anil V. Rao,et al.  GPOPS-II , 2014, ACM Trans. Math. Softw..

[19]  X. Andy Sun,et al.  A two-level distributed algorithm for nonconvex constrained optimization , 2019, Computational Optimization and Applications.

[20]  C. T. Kelley,et al.  Convergence Analysis for Anderson Acceleration , 2015, SIAM J. Numer. Anal..

[21]  Xianzhong Chen,et al.  Distributed economic MPC: Application to a nonlinear chemical process network , 2012 .

[22]  Moritz Diehl,et al.  An Augmented Lagrangian Based Algorithm for Distributed NonConvex Optimization , 2016, SIAM J. Optim..

[23]  Panagiotis D. Christofides,et al.  Distributed model predictive control: A tutorial review and future research directions , 2013, Comput. Chem. Eng..

[24]  Marcello Farina,et al.  Distributed predictive control: A non-cooperative algorithm with neighbor-to-neighbor communication for linear systems , 2012, Autom..

[25]  B. Mercier,et al.  A dual algorithm for the solution of nonlinear variational problems via finite element approximation , 1976 .

[26]  João M. F. Xavier,et al.  Distributed Optimization With Local Domains: Applications in MPC and Network Flows , 2013, IEEE Transactions on Automatic Control.

[27]  Karl Henrik Johansson,et al.  The quadruple-tank process: a multivariable laboratory process with an adjustable zero , 2000, IEEE Trans. Control. Syst. Technol..

[28]  R. Glowinski,et al.  Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de Dirichlet non linéaires , 1975 .

[29]  Mihailo R. Jovanovic,et al.  The Proximal Augmented Lagrangian Method for Nonsmooth Composite Optimization , 2016, IEEE Transactions on Automatic Control.

[30]  Dimitri P. Bertsekas,et al.  On the Douglas—Rachford splitting method and the proximal point algorithm for maximal monotone operators , 1992, Math. Program..

[31]  Carlo Fischione,et al.  On the Convergence of Alternating Direction Lagrangian Methods for Nonconvex Structured Optimization Problems , 2014, IEEE Transactions on Control of Network Systems.

[32]  Victor M. Zavala,et al.  pyomo.dae: a modeling and automatic discretization framework for optimization with differential and algebraic equations , 2018, Math. Program. Comput..

[33]  Asuman E. Ozdaglar,et al.  Convergence Rate of Distributed ADMM Over Networks , 2016, IEEE Transactions on Automatic Control.

[34]  Stephen J. Wright,et al.  Cooperative distributed model predictive control , 2010, Syst. Control. Lett..

[35]  Yunmei Chen,et al.  An Accelerated Linearized Alternating Direction Method of Multipliers , 2014, SIAM J. Imaging Sci..

[36]  Prodromos Daoutidis,et al.  Distributed nonlinear model predictive control through accelerated parallel ADMM , 2019, 2019 American Control Conference (ACC).

[37]  Jacob K. White,et al.  GMRES-Accelerated ADMM for Quadratic Objectives , 2016, SIAM J. Optim..

[38]  Shiqian Ma,et al.  Structured nonconvex and nonsmooth optimization: algorithms and iteration complexity analysis , 2016, Computational Optimization and Applications.

[39]  G. Martin,et al.  Nonlinear model predictive control , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[40]  Prodromos Daoutidis,et al.  Optimal decomposition for distributed optimization in nonlinear model predictive control through community detection , 2018, Comput. Chem. Eng..

[41]  Mingyi Hong,et al.  Perturbed proximal primal–dual algorithm for nonconvex nonsmooth optimization , 2019, Math. Program..

[42]  P. Pulay Convergence acceleration of iterative sequences. the case of scf iteration , 1980 .

[43]  Zhi-Quan Luo,et al.  Convergence analysis of alternating direction method of multipliers for a family of nonconvex problems , 2014, 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[44]  Donald G. M. Anderson Iterative Procedures for Nonlinear Integral Equations , 1965, JACM.

[45]  P. Daoutidis,et al.  Decomposition of control and optimization problems by network structure: Concepts, methods, and inspirations from biology , 2019, AIChE Journal.

[46]  Behçet Açikmese,et al.  Successive convexification of non-convex optimal control problems and its convergence properties , 2016, 2016 IEEE 55th Conference on Decision and Control (CDC).

[47]  Wotao Yin,et al.  Global Convergence of ADMM in Nonconvex Nonsmooth Optimization , 2015, Journal of Scientific Computing.

[48]  Stephen J. Wright,et al.  Stability and optimality of distributed model predictive control , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[49]  Lorenz T. Biegler,et al.  Large-scale Optimization Formulations and Strategies for Nonlinear Model Predictive Control , 2018 .

[50]  Lorenz T. Biegler,et al.  Line Search Filter Methods for Nonlinear Programming: Motivation and Global Convergence , 2005, SIAM J. Optim..

[51]  Behrouz Touri,et al.  Non-Convex Distributed Optimization , 2015, IEEE Transactions on Automatic Control.

[52]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[53]  Stephen P. Boyd,et al.  Globally Convergent Type-I Anderson Acceleration for Nonsmooth Fixed-Point Iterations , 2018, SIAM J. Optim..

[54]  Bart De Schutter,et al.  Accelerated gradient methods and dual decomposition in distributed model predictive control , 2013, Autom..

[55]  Colin Neil Jones,et al.  A Parametric Nonconvex Decomposition Algorithm for Real-Time and Distributed NMPC , 2016, IEEE Transactions on Automatic Control.

[56]  Karl Henrik Johansson,et al.  Distributed MPC Via Dual Decomposition and Alternative Direction Method of Multipliers , 2012, ArXiv.

[57]  X. A. Sun,et al.  A two-level distributed algorithm for general constrained non-convex optimization with global convergence , 2019 .

[58]  Francisco Facchinei,et al.  Parallel and Distributed Methods for Constrained Nonconvex Optimization—Part I: Theory , 2016, IEEE Transactions on Signal Processing.

[59]  Riccardo Scattolini,et al.  Architectures for distributed and hierarchical Model Predictive Control - A review , 2009 .

[60]  Michael M. Zavlanos,et al.  On the Convergence of a Distributed Augmented Lagrangian Method for Nonconvex Optimization , 2017, IEEE Transactions on Automatic Control.

[61]  Angelia Nedic,et al.  Distributed optimization over time-varying directed graphs , 2013, 52nd IEEE Conference on Decision and Control.

[62]  Y. Nesterov A method for solving the convex programming problem with convergence rate O(1/k^2) , 1983 .