Improved MOF nanoparticle recovery and purification using crosslinked PVDF membranes.

Crosslinked PVDF-membranes are demonstrated to offer a viable alternative for centrifugation in the preparation of MOF-particles, thus realising new opportunities at lab-scale and continuous production at large-scale. The membranes combine extreme-pH with solvent stability, thus enabling application in any MOF synthesis, demonstrated here for ZIF-8, ZIF-67, HKUST-1, UiO-66 and MIL-53(Al).

[1]  I. Vankelecom,et al.  Development of a polyvinylidene difluoride membrane for nanofiltration , 2018, Journal of Membrane Science.

[2]  Henrietta W. Langmi,et al.  Review on the current practices and efforts towards pilot-scale production of metal-organic frameworks (MOFs) , 2017 .

[3]  F. G. Cirujano MOFs vs. zeolites: carbonyl activation with M(IV) catalytic sites , 2017 .

[4]  J. Navarro,et al.  Selective One‐Pot Two‐Step C−C Bond Formation using Metal–Organic Frameworks with Mild Basicity as Heterogeneous Catalysts , 2017 .

[5]  I. Vankelecom,et al.  Transformation of cross-linked polyimide UF membranes into highly permeable SRNF membranes via solvent annealing , 2017 .

[6]  D. D. De Vos,et al.  Boosting the Catalytic Performance of Metal-Organic Frameworks for Steroid Transformations by Confinement within a Mesoporous Scaffold. , 2017, Angewandte Chemie.

[7]  A. Thornton,et al.  New synthetic routes towards MOF production at scale. , 2017, Chemical Society reviews.

[8]  I. Vankelecom,et al.  Controlled positioning of MOFs in interfacially polymerized thin-film nanocomposites , 2016 .

[9]  Dc Kitty Nijmeijer,et al.  Understanding the role of nanoparticle size and polydispersity in fouling development during dead-end microfiltration , 2016 .

[10]  Ryan P. Lively,et al.  Reverse osmosis molecular differentiation of organic liquids using carbon molecular sieve membranes , 2016, Science.

[11]  P. S. Jishna,et al.  Study of PVDF asymmetric membranes in a high-throughput membrane bioreactor (HT-MBR): Influence of phase inversion parameters and filtration performance , 2016 .

[12]  Hans Van Gorp,et al.  Chemical vapour deposition of zeolitic imidazolate framework thin films. , 2016, Nature materials.

[13]  J. Hupp,et al.  Mechanochemical and solvent-free assembly of zirconium-based metal–organic frameworks† †Electronic supplementary information (ESI) available: Selected PXRD, FTIR-ATR, BET, TGA, SEM and DLS data. See DOI: 10.1039/c5cc08972g Click here for additional data file. , 2015, Chemical communications.

[14]  V. Jaiswal,et al.  Design, synthesis, and biological evaluation of oxindole derivatives as antidepressive agents. , 2015, Bioorganic & medicinal chemistry letters.

[15]  C. Janiak,et al.  High-yield, fluoride-free and large-scale synthesis of MIL-101(Cr). , 2015, Dalton transactions.

[16]  I. Vankelecom,et al.  Understanding and guiding the phase inversion process for synthesis of solvent resistant nanofiltration membranes , 2015 .

[17]  D. Cazorla-Amorós,et al.  Beyond the H2/CO2 upper bound: one-step crystallization and separation of nano-sized ZIF-11 by centrifugation and its application in mixed matrix membranes , 2015 .

[18]  I. Vankelecom,et al.  Polymer supported ZIF-8 membranes prepared via an interfacial synthesis method. , 2015, Chemical communications.

[19]  Xiangyang Zhu,et al.  Inherent anchorages in UiO-66 nanoparticles for efficient capture of alendronate and its mediated release. , 2014, Chemical communications.

[20]  D. Farrusseng,et al.  Hierarchical Zeolitic Imidazolate Framework‐8 Catalyst for Monoglyceride Synthesis , 2013 .

[21]  G. Koeckelberghs,et al.  Synthesis of modified poly(ether ether ketone) polymer for the preparation of ultrafiltration and nanofiltration membranes via phase inversion , 2013 .

[22]  Michel Waroquier,et al.  Synthesis modulation as a tool to increase the catalytic activity of metal-organic frameworks: the unique case of UiO-66(Zr). , 2013, Journal of the American Chemical Society.

[23]  Edward Lester,et al.  Instant MOFs: continuous synthesis of metal-organic frameworks by rapid solvent mixing. , 2012, Chemical communications.

[24]  B. Trost,et al.  Molybdenum-catalyzed asymmetric allylic alkylation of 3-alkyloxindoles: reaction development and applications. , 2011, Chemistry.

[25]  Freek Kapteijn,et al.  An amine-functionalized MIL-53 metal-organic framework with large separation power for CO2 and CH4. , 2009, Journal of the American Chemical Society.

[26]  Wei Zhang,et al.  Functionalized 3-benzylidene-indolin-2-ones: inducers of NAD(P)H-quinone oxidoreductase 1 (NQO1) with antiproliferative activity. , 2009, Bioorganic & medicinal chemistry.

[27]  Weiqi Wang,et al.  Facile synthesis of nanocrystals of a microporous metal-organic framework by an ultrasonic method and selective sensing of organoamines. , 2008, Chemical communications.

[28]  Raquel P. Herrera,et al.  Catalytic enantioselective Friedel-Crafts alkylation of indoles with nitroalkenes by using a simple thiourea organocatalyst. , 2005, Angewandte Chemie.

[29]  J. Deschamps,et al.  Synthesis of spirooxindoles via asymmetric 1,3-dipolar cycloaddition , 2005 .

[30]  Michael O'Keeffe,et al.  Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage , 2002, Science.

[31]  M. O'keeffe,et al.  Design and synthesis of an exceptionally stable and highly porous metal-organic framework , 1999, Nature.

[32]  Stephen Mann,et al.  Coupled synthesis and self-assembly of nanoparticles to give structures with controlled organization , 1999, Nature.

[33]  Stefan Kaskel,et al.  Continuous microreactor synthesis of ZIF-8 with high space–time-yield and tunable particle size , 2016 .