Surface and contact forces models within the framework of microassembly

This paper gives a review of existing models used by other authors aiming at modeling micromanipulation tasks. It introduces the distinction between surface forces, which act even at distance (van der Waals (VDW), capillary and electrostatic forces) and contact forces, which are closely related to deformation and adhesion. Moreover, it presents our work on VDW and capillary forces: compared to existing approximations, these models allow to take more parameters into account such as, for example, statistical roughness in VDW forces or the volume of liquid in capillary forces. They could be used, for example, to build up new handling strategies as illustrated in the references cited in the paper. However, this paper focuses on fundamental models and does not present any specific microhandling strategy.

[1]  A. Delchambre,et al.  Capillary and surface tension forces in the manipulation of small parts , 2003, Proceedings of the IEEE International Symposium onAssembly and Task Planning, 2003..

[2]  P. Xavier,et al.  Micro-assembly planning with van der Waals force , 1999, Proceedings of the 1999 IEEE International Symposium on Assembly and Task Planning (ISATP'99) (Cat. No.99TH8470).

[3]  Hm Pollock What part does interfacial energy play in the deformation and adhesion of metals , 1981 .

[4]  J Descloux Analyse numérique I , 1969 .

[5]  L. Lee The Chemistry and Physics of Solid Adhesion , 1991 .

[6]  K. Kendall,et al.  Surface energy and the contact of elastic solids , 1971, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[7]  Tomomasa Sato,et al.  Micro-object Pick and Place Operation under SEM based on Micro-physics , 2002, J. Robotics Mechatronics.

[8]  A. D. McLachlan,et al.  Three-body dispersion forces , 1963 .

[9]  Yu Zhou,et al.  Adhesion force modeling and measurement for micromanipulation , 1998, Other Conferences.

[10]  E. Lifshitz The theory of molecular attractive forces between solids , 1956 .

[11]  Cédric Clévy,et al.  Comparison between micro-objects manipulations in dry and liquid mediums , 2005, 2005 International Symposium on Computational Intelligence in Robotics and Automation.

[12]  L. B. Schein,et al.  General model of sphere-sphere insulator contact electrification , 1995 .

[13]  Jan Peirs,et al.  Design of micromechatronic systems: scale laws, technologies, and medical applications , 2001 .

[14]  Y. Ando,et al.  The Effect of Asperity Array Geometry on Friction and Pull-Off Force , 1997 .

[15]  B. V. Derjaguin,et al.  Effect of contact deformations on the adhesion of particles , 1975 .

[16]  Alain Delchambre,et al.  A study of capillary forces as a gripping principle , 2004 .

[17]  David Tabor,et al.  Friction—The Present State of Our Understanding , 1981 .

[18]  Stephan Herminghaus,et al.  Capillary forces in tapping mode atomic force microscopy , 2002 .

[19]  Hans J. Rath,et al.  Particle−Surface Capillary Forces , 1999 .

[20]  Pasqualina M. Sarro,et al.  Self-adjustment of Micro-mechatronic Systems , 2003 .

[21]  L. Kiesewetter,et al.  Downscaling of grippers for micro assembly , 2002 .

[22]  R. A. Bowling,et al.  A Theoretical Review of Particle Adhesion , 1988 .

[23]  H. C. Hamaker The London—van der Waals attraction between spherical particles , 1937 .

[24]  D. Maugis Adhesion of spheres : the JKR-DMT transition using a dugdale model , 1992 .

[25]  Fumihito Arai,et al.  Micro manipulation based on micro physics-strategy based on attractive force reduction and stress measurement , 1995, Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots.

[26]  Ronald S. Fearing,et al.  Survey of sticking effects for micro parts handling , 1995, Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots.

[27]  Jacob N. Israelachvili,et al.  The nature of van der waals forces , 1974 .

[28]  W. R. Harper The Volta effect as a cause of static electrification , 1951, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[29]  Alain Delchambre,et al.  Non-contact handling in microassembly: Acoustical levitation , 2005 .

[30]  A. W. Bright,et al.  Contact and Frictional Electrification , 1967 .

[31]  Alain Delchambre,et al.  Forces acting on microparts: towards a numerical approach for gripper design and manipulation strategies in microassembly , 2003 .

[32]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[33]  J. Israelachvili,et al.  Measurement of the deformation and adhesion of solids in contact , 1987 .

[34]  Charge flow during metal-insulator contact. , 1992, Physical review. B, Condensed matter.

[35]  Stephane Regnier,et al.  Simulation of micro-manipulations: Adhesion forces and specific dynamic models , 1999 .

[36]  Xavier Chateau,et al.  Small Particle at a Fluid Interface: Effect of Contact Angle Hysteresis on Force and Work of Detachment , 2002 .

[37]  Yves Rollot Micro-manipulations par adhesion : modelisations dynamiques et experimentations , 2000 .

[38]  Rossetti,et al.  Modeling the Evolution and Rupture of Pendular Liquid Bridges in the Presence of Large Wetting Hysteresis. , 2000, Journal of colloid and interface science.

[39]  H. Casimir,et al.  Influence of Retardation on the London–van der Waals Forces , 1946, Nature.

[40]  Bharat Bhushan,et al.  Theoretical investigation of the distance dependence of capillary and van der Waals forces in scanning force microscopy , 2000 .

[41]  K. Hirabayashi Dielectric Theory of the Barrier Height at Metal-Semiconductor and Metal-Insulator Interfaces , 1971 .

[42]  León Benmayor,et al.  Dimensional analysis and similitude in microsystem design and assembly , 2000 .

[44]  N. Gane,et al.  Sliding friction under a negative load , 1972 .

[45]  S. Yariv,et al.  Physical Chemistry of Surfaces , 1979 .

[46]  H. Casimir,et al.  The Influence of Retardation on the London-van der Waals Forces , 1948 .

[47]  Abraham Marmur,et al.  Tip-surface capillary interactions , 1993 .

[48]  Stéphane Régnier,et al.  Manipulation of micro-objects using adhesion forces and dynamical effects , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[49]  R. Carpick,et al.  A General Equation for Fitting Contact Area and Friction vs Load Measurements. , 1999, Journal of colloid and interface science.

[50]  Lieng-Huang Lee,et al.  Dual mechanism for metal-polymer contact electrification , 1994 .

[51]  J. Lowell,et al.  Contact electrification of metals , 1975 .

[52]  H. von Känel,et al.  AFM-study of sticking effects for microparts handling , 2000 .