Termination of Reentry by a Long‐Lasting AC Shock in a Slice of Canine Heart: A Computational Study

AC Cardioversion in a Canine Slice. Introduction: A heart in fibrillation can be entrained by long‐lasting alternating current (AC) stimuli, leading to defibrillation. To investigate the role entrainment plays in defibrillation, computer simulations of AC cardioversion in a three‐dimensional slice of the canine heart were performed.

[1]  S. Knisley Exploring Cardiac Response to AC Stimulation , 2001, Journal of cardiovascular electrophysiology.

[2]  A. Garfinkel,et al.  Mechanisms of Ventricular Fibrillation Induction by 60-Hz Alternating Current in Isolated Swine Right Ventricle , 2000, Circulation.

[3]  N. Trayanova Far-field stimulation of cardiac tissue , 1999, Herzschrittmachertherapie und Elektrophysiologie.

[4]  T. Betts,et al.  Increased Defibrillation Threshold with Right-sided Active Pectoral Can , 2000, Journal of Interventional Cardiac Electrophysiology.

[5]  N. Trayanova,et al.  Shock-induced arrhythmogenesis in the myocardium. , 2002, Chaos.

[6]  J Jalife,et al.  Standing excitation waves in the heart induced by strong alternating electric fields. , 2001, Physical review letters.

[7]  F A Roberge,et al.  Revised formulation of the Hodgkin-Huxley representation of the sodium current in cardiac cells. , 1987, Computers and biomedical research, an international journal.

[8]  R A Malkin,et al.  Excitation of a Cardiac Muscle Fiber by Extracellularly Applied Sinusoidal Current , 2001, Journal of cardiovascular electrophysiology.

[9]  R Bragós,et al.  Percutaneous Electrocatheter Technique for On‐Line Detection of Healed Transmural Myocardial Infarction , 2000, Pacing and clinical electrophysiology : PACE.

[10]  R A Malkin,et al.  Cardiovascular collapse caused by electrocardiographically silent 60-Hz intracardiac leakage current. Implications for electrical safety. , 1999, Circulation.

[11]  N. Trayanova,et al.  Computer Modeling of Defibrillation II: Why Does the Shock Fail? , 2002 .

[12]  C Anderson,et al.  Success and failure of biphasic shocks: results of bidomain simulations. , 2001, Mathematical biosciences.

[13]  K. Ellenbogen,et al.  A Prospective Randomized‐Controlled Trial of Ventricular Fibrillation Detection Time in a DDDR Ventricular Defibrillator , 2000 .

[14]  N. G. Sepulveda,et al.  Current injection into a two-dimensional anisotropic bidomain. , 1989, Biophysical journal.

[15]  K Skouibine,et al.  A numerically efficient model for simulation of defibrillation in an active bidomain sheet of myocardium. , 2000, Mathematical biosciences.

[16]  C. Beck,et al.  Ventricular fibrillation of long duration abolished by electric shock. , 1947, Journal of the American Medical Association.

[17]  D. R. Hooker,et al.  THE EFFECT OF ALTERNATING ELECTRICAL CURRENTS ON THE HEART , 1933 .

[18]  I R Efimov,et al.  Virtual electrode-induced reexcitation: A mechanism of defibrillation. , 1999, Circulation research.

[19]  R E Ideker,et al.  Spatial changes in the transmembrane potential during extracellular electric stimulation. , 1998, Circulation research.

[20]  P. Hunter,et al.  Laminar structure of the heart: ventricular myocyte arrangement and connective tissue architecture in the dog. , 1995, The American journal of physiology.

[21]  B. G. King,et al.  Effect of Electric Shock on the Heart , 1936, Transactions of the American Institute of Electrical Engineers.

[22]  N. Trayanova,et al.  Entrainment by an Extracellular AC Stimulus in a Computational Model of Cardiac Tissue , 2001, Journal of cardiovascular electrophysiology.

[23]  G. Breithardt,et al.  Subthreshold electrical stimulation for termination and prevention of reentrant tachycardias. , 1992, Journal of electrocardiology.

[24]  P. Hunter,et al.  Mathematical model of geometry and fibrous structure of the heart. , 1991, The American journal of physiology.

[25]  R A Malkin,et al.  Mechanisms by which AC Leakage Currents Cause Complete Hemodynamic Collapse Without Inducing Fibrillation , 2001, Journal of cardiovascular electrophysiology.

[26]  M. Weil,et al.  The effects of biphasic and conventional monophasic defibrillation on postresuscitation myocardial function. , 1999, Journal of the American College of Cardiology.

[27]  Felipe Aguel,et al.  Computer simulations of cardiac defibrillation: a look inside the heart , 2002 .

[28]  I R Efimov,et al.  Virtual Electrodes and Deexcitation: New Insights into Fibrillation Induction and Defibrillation , 2000, Journal of cardiovascular electrophysiology.

[29]  P. Savard,et al.  Termination of sustained ventricular tachycardia by ultrarapid subthreshold stimulation in humans. , 1988, Circulation.

[30]  N. Trayanova,et al.  Anode/cathode make and break phenomena in a model of defibrillation , 1999, IEEE Transactions on Biomedical Engineering.

[31]  V. Fast,et al.  Spatial changes in transmembrane potential during extracellular electrical shocks in cultured monolayers of neonatal rat ventricular myocytes. , 1996, Circulation research.

[32]  K. Ellenbogen,et al.  A prospective randomized-controlled trial of ventricular fibrillation detection time in a DDDR ventricular defibrillator. Ventak AV II DR Study Investigators. , 2000, Pacing and clinical electrophysiology : PACE.

[33]  T. Betts,et al.  Reduction in Defibrillation Threshold Using an Auxiliary Shock Delivered in the Middle Cardiac Vein , 2000, Pacing and clinical electrophysiology : PACE.

[34]  I R Efimov,et al.  Direct Evidence of the Role of Virtual Electrode‐Induced Phase Singularity in Success and Failure of Defibrillation , 2000, Journal of cardiovascular electrophysiology.

[35]  G. Kaye,et al.  The measurement of impedance to assess myocardial contractility and rhythm stability. , 2000, Physiological measurement.

[36]  N Trayanova,et al.  Termination of Spiral Waves with Biphasic Shocks: , 2000, Journal of cardiovascular electrophysiology.