A comparison of methods for estimating the random effects distribution of a linear mixed model

This article reviews various recently suggested approaches to estimate the random effects distribution in a linear mixed model, i.e. (1) the smoothing by roughening approach of Shen and Louis,1 (2) the semi-non-parametric approach of Zhang and Davidian,2 (3) the heterogeneity model of Verbeke and Lesaffre 3 and (4) a flexible approach of Ghidey et al. 4 These four approaches are compared via an extensive simulation study. We conclude that for the considered cases, the approach of Ghidey et al. 4 often shows to have the smallest integrated mean squared error for estimating the random effects distribution. An analysis of a longitudinal dental data set illustrates the performance of the methods in a practical example.

[1]  D. Harville Maximum Likelihood Approaches to Variance Component Estimation and to Related Problems , 1977 .

[2]  P. Diggle,et al.  Analysis of Longitudinal Data. , 1997 .

[3]  Wei Shen,et al.  Empirical Bayes Estimation via the Smoothing by Roughening Approach , 1999 .

[4]  M. Kenward,et al.  Informative Drop‐Out in Longitudinal Data Analysis , 1994 .

[5]  Paul H. C. Eilers,et al.  Flexible smoothing with B-splines and penalties , 1996 .

[6]  M Davidian,et al.  Linear Mixed Models with Flexible Distributions of Random Effects for Longitudinal Data , 2001, Biometrics.

[7]  Luc Martens,et al.  The Signal Tandmobiel (r) Project: a longitudinal intervention oral health promotion study in Flanders (Belgium) baseline and first year results. , 2000 .

[8]  S. Zeger,et al.  A Smooth Nonparametric Estimate of a Mixing Distribution Using Mixtures of Gaussians , 1996 .

[9]  Roderick J. A. Little,et al.  Statistical Analysis with Missing Data: Little/Statistical Analysis with Missing Data , 2002 .

[10]  Michael Unser,et al.  On the asymptotic convergence of B-spline wavelets to Gabor functions , 1992, IEEE Trans. Inf. Theory.

[11]  J. Ware,et al.  Random-effects models for longitudinal data. , 1982, Biometrics.

[12]  T A Louis,et al.  Random effects models with non-parametric priors. , 1992, Statistics in medicine.

[13]  A. Gallant,et al.  Semi-nonparametric Maximum Likelihood Estimation , 1987 .

[14]  Kenneth Lange,et al.  Numerical analysis for statisticians , 1999 .

[15]  T. Louis,et al.  Triple‐goal estimates in two‐stage hierarchical models , 1998 .

[16]  G. Verbeke,et al.  The effect of misspecifying the random-effects distribution in linear mixed models for longitudinal data , 1997 .

[17]  K. Bailey,et al.  Analysing changes in the presence of informative right censoring caused by death and withdrawal. , 1988, Statistics in medicine.

[18]  G. Verbeke,et al.  A Linear Mixed-Effects Model with Heterogeneity in the Random-Effects Population , 1996 .

[19]  Geert Verbeke,et al.  Flexible modelling of the covariance matrix in a linear random effects model , 2000 .

[20]  Geoffrey J. McLachlan,et al.  Finite Mixture Models , 2019, Annual Review of Statistics and Its Application.

[21]  E. Lesaffre,et al.  Smooth Random Effects Distribution in a Linear Mixed Model , 2004, Biometrics.

[22]  N. Laird Nonparametric Maximum Likelihood Estimation of a Mixing Distribution , 1978 .

[23]  Roderick J. A. Little,et al.  Statistical Analysis with Missing Data , 1988 .