From polymer transistors toward printed electronics

[1]  John A. Rogers,et al.  Nonphotolithographic fabrication of organic transistors with micron feature sizes , 1998 .

[2]  High Performance Organic Field-Effect Transistors and Integrated Inverters , 2001 .

[3]  John A. Rogers,et al.  Printing Process Suitable for Reel-to-Reel Production of High-Performance Organic Transistors and Circuits , 1999, Advanced Materials.

[4]  E. W. Meijer,et al.  Two-dimensional charge transport in self-organized, high-mobility conjugated polymers , 1999, Nature.

[5]  Richard H. Friend,et al.  Inkjet Printed Via‐Hole Interconnections and Resistors for All‐Polymer Transistor Circuits , 2001 .

[6]  H. Sirringhaus,et al.  High-Resolution Ink-Jet Printing of All-Polymer Transistor Circuits , 2000, Science.

[7]  A. Yassar,et al.  All-Polymer Field-Effect Transistor Realized by Printing Techniques , 1994, Science.

[8]  S. Holdcroft,et al.  Electrical characteristics and photolytic tuning of poly(3-hexylthiophene) thin film metal–insulator–semiconductor field-effect transistors (MISFETs) , 1992 .

[9]  R. Zamboni,et al.  Instability in electrical performance of organic semiconductor devices , 1992 .

[10]  Chemistry, 1996-2000 , 2003 .

[11]  George M. Whitesides,et al.  FORMATION OF PATTERNED MICROSTRUCTURES OF CONDUCTING POLYMERS BY SOFT LITHOGRAPHY, AND APPLICATIONS IN MICROELECTRONIC DEVICE FABRICATION , 1999 .

[12]  S. Holdcroft,et al.  Reversible charge transfer complexes between molecular oxygen and poly(3-alkylthiophene)s† , 1994 .

[13]  G. Horowitz Origin of the “ohmic” current in organic field‐effect transistors , 1996 .

[14]  J. Oostinga,et al.  Charge trapping instabilities of sexithiophene Thin Film Transistors , 1999 .

[15]  Feng Gao,et al.  Large area, high resolution, dry printing of conducting polymers for organic electronics , 2003 .

[16]  R. Sarpeshkar,et al.  Large-scale complementary integrated circuits based on organic transistors , 2000, Nature.

[17]  G. Horowitz,et al.  All-organic field-effect transistors made of π-conjugated oligomers and polymeric insulators , 1993 .

[18]  P. Calvert,et al.  FT-IR studies on thermal degradation of electrically conducting polymers , 1994 .

[19]  H. Sirringhaus,et al.  Integrated optoelectronic devices based on conjugated polymers , 1998, Science.

[20]  Debra J. Mascaro,et al.  Organic thin-film transistors: A review of recent advances , 2001, IBM J. Res. Dev..

[21]  Henrique L. Gomes,et al.  Effect of oxygen on the electrical characteristics of field effect transistors formed from electrochemically deposited films of poly(3-methylthiophene) , 1991 .

[22]  Gerwin H. Gelinck,et al.  High-performance all-polymer integrated circuits , 2000 .

[23]  S. Holdcroft,et al.  Solid-state photochemistry of π-conjugated poly(3-alkylthiophenes) , 1995 .

[24]  H. Grubin The physics of semiconductor devices , 1979, IEEE Journal of Quantum Electronics.

[25]  Wolfgang Clemens,et al.  Stability of polythiophene-based transistors and circuits , 2003 .

[26]  Gilles Horowitz,et al.  The oligothiophene‐based field‐effect transistor: How it works and how to improve it , 1990 .

[27]  David Nilsson,et al.  Bi-stable and dynamic current modulation in electrochemical organic transistors , 2002 .

[28]  Zhenan Bao,et al.  High-performance plastic transistors fabricated by printing techniques , 1997 .

[29]  G. Whitesides,et al.  Printing, molding, and near-field photolithographic methods for patterning organic lasers, smart pixels and simple circuits , 2000 .