Gauge fields on coherent sheaves

Given a flat gauge field ∇ on a vector bundle F over a manifold M we deduce a necessary and sufficient condition for the field ∇ + E, with E an End(F )-valued 1-form, to be a YangMills field. For each curve of Yang-Mills fields on F starting at ∇, we define a cohomology class of H(M, P), with P the sheaf of ∇-parallel sections of F . This cohomology class vanishes when the curve consists of flat fields. We prove the existence of a curve of Yang-Mills fields on a bundle over the torus T 2 connecting two vacuum states. We define holomorphic and meromorphic gauge fields on a coherent sheaf and the corresponding Yang-Mills functional. In this setting, we analyze the Aharonov-Bohm effect and the Wong equation. MSC 2010: 53C05, 14F06, 58E15, 32C35

[1]  Raymond O. Wells,et al.  Differential analysis on complex manifolds , 1980 .

[2]  P. Deligne,et al.  Equations differentielles à points singuliers reguliers , 1970 .

[3]  Günter Scheja Fortsetzungssätze der komplex-analytischen Cohomologie und ihre algebraische Charakterisierung , 1964 .

[4]  J. Merker,et al.  The Hartogs extension theorem on (n – 1)-complete complex spaces , 2007, 0704.3216.

[5]  F. Norguet Théorèmes de finitude pour la cohomologie des espaces complexes , 1962 .

[6]  R. Hartshorne Generalized divisors on Gorenstein schemes , 1994 .

[7]  G. Naber,et al.  Topology, geometry, and gauge fields , 1997 .

[8]  A. Grothendieck,et al.  Éléments de géométrie algébrique , 1960 .

[9]  S. K. Wong Field and particle equations for the classical Yang-Mills field and particles with isotopic spin , 1970 .

[10]  D-Branes on Calabi-Yau Manifolds , 2004, hep-th/0403166.

[11]  Mark Gross,et al.  Dirichlet Branes and Mirror Symmetry , 2009 .

[12]  Eberhard Freitag,et al.  Analytic Functions of Several Complex Variables , 2011 .

[13]  Saverio Pascazio,et al.  The Geometric Phase in Quantum Systems , 2003 .

[14]  A. Viña Flat Gauge Fields and the Riemann-Hilbert Correspondence , 2019, 1912.01239.

[15]  A. Jamiołkowski,et al.  Geometric Phases in Classical and Quantum Mechanics , 2004 .

[16]  Joe W. Harris,et al.  Principles of Algebraic Geometry , 1978 .

[17]  R. Remmert,et al.  Coherent Analytic Sheaves , 1984 .

[18]  M. Atiyah Complex analytic connections in fibre bundles , 1957 .

[19]  Robin Hartshorne,et al.  Stable reflexive sheaves , 1980 .

[20]  Kiyoshi Takeuchi,et al.  D-Modules, Perverse Sheaves, and Representation Theory , 2007 .