Engineering the point spread function of layered metamaterials

Layered metal-dielectric metamaterials have filtering properties both in the frequency domain and in the spatial frequency domain. Engineering their spatial filtering response is a way of designing structures with specific diffraction properties for such applications as sub-diffraction imaging, supercollimation, or optical signal processing at the nanoscale. In this paper we review the recent progress in this field.We also present a numerical optimization framework for layered metamaterials, based on the use of evolutionary algorithms. A measure of similarity obtained using Hölder’s inequality is adapted to construct the overall criterion function. We analyse the influence of surface roughness on the quality of imaging.

[1]  R. Williams,et al.  A smooth optical superlens , 2010 .

[2]  Tie Jun Cui,et al.  Subwavelength image manipulation through an oblique layered system. , 2011, Optics express.

[3]  Yang Hao,et al.  Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime , 2006 .

[4]  M. Centini,et al.  Tailoring metallodielectric structures for superresolution and superguiding applications in the visi , 2008, 0801.0749.

[5]  Richard J. Blaikie,et al.  Resonant surface roughness interactions in planar superlenses , 2010 .

[6]  Y. Kivshar,et al.  Double‐shell metamaterial coatings for plasmonic cloaking , 2012 .

[7]  John E. Sipe,et al.  Effective-medium approach to planar multilayer hyperbolic metamaterials: Strengths and limitations , 2012 .

[8]  R. Kotyński,et al.  Fourier optics approach to imaging with sub-wavelength resolution through metal-dielectric multilayers , 2010, 1006.3669.

[9]  Michael Scalora,et al.  Transmissive properties of Ag/MgF2 photonic band gaps , 1998 .

[10]  David R. Smith,et al.  Spatial filtering using media with indefinite permittivity and permeability tensors , 2003 .

[11]  Anna Pastuszczak,et al.  Optimized low-loss multilayers for imaging with sub-wavelength resolution in the visible wavelength range , 2011, 1102.3083.

[12]  Juan Jose Miret,et al.  Diffraction-managed superlensing using plasmonic lattices , 2012 .

[13]  Sailing He,et al.  Subwavelength focusing with a multilayered Fabry-Perot structure at optical frequencies , 2007 .

[14]  David M. Slocum,et al.  Funneling light through a subwavelength aperture using epsilon-near-zero materials , 2011, CLEO: 2011 - Laser Science to Photonic Applications.

[15]  Z. Jacob,et al.  Optical Hyperlens: Far-field imaging beyond the diffraction limit. , 2006, Optics express.

[16]  C Sibilia,et al.  Transmission function properties for multi-layered structures: application to super-resolution. , 2009, Optics express.

[17]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[18]  E. Palik Handbook of Optical Constants of Solids , 1997 .

[19]  Michael Scalora,et al.  Negative refraction and subwavelength imaging using transparent metal-dielectric stacks , 2006 .

[20]  Costantino De Angelis,et al.  Subwavelength diffraction management. , 2008, Optics letters.

[21]  N. Fang,et al.  Sub–Diffraction-Limited Optical Imaging with a Silver Superlens , 2005, Science.

[22]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[23]  T. Szoplik,et al.  Sensitivity of imaging properties of metal-dielectric layered flat lens to fabrication inaccuracies , 2010 .

[24]  Filippo Capolino,et al.  Hyperbolic metamaterial as super absorber for scattered fields generated at its surface , 2012 .

[25]  D. Schurig,et al.  The asymmetric lossy near-perfect lens , 2002 .

[26]  Steven G. Johnson,et al.  Meep: A flexible free-software package for electromagnetic simulations by the FDTD method , 2010, Comput. Phys. Commun..

[27]  Vincenzo Galdi,et al.  Analytical study of subwavelength imaging by uniaxial epsilon-near-zero metamaterial slabs , 2012, 1205.1620.

[28]  R. Kotyński,et al.  Sub-wavelength diffraction-free imaging with low-loss metal-dielectric multilayers , 2010, 1002.0658.

[29]  L. Tsang,et al.  Subwavelength imaging enhancement through a three-dimensional plasmon superlens with rough surface. , 2012, Optics letters.

[30]  Katarzyna Chalasinska-Macukow,et al.  Normalization of correlation filters based on the Hoelder's inequality , 1998, Other Conferences.

[31]  R. C. Thompson,et al.  Optical Waves in Layered Media , 1990 .

[32]  Sang‐Hyun Oh,et al.  Ultrasmooth Patterned Metals for Plasmonics and Metamaterials , 2009, Science.

[33]  J. Goodman Introduction to Fourier optics , 1969 .

[34]  M. Stolarek,et al.  Spatial filtering with rough metal-dielectric layered metamaterials , 2013 .

[35]  R. Blaikie,et al.  Super-resolution imaging through a planar silver layer. , 2005, Optics express.

[36]  Krassimir Panajotov,et al.  Two-dimensional point spread matrix of layered metal-dielectric imaging elements. , 2010, Journal of the Optical Society of America. A, Optics, image science, and vision.

[37]  D. Tsai,et al.  Directed subwavelength imaging using a layered metal-dielectric system , 2006, physics/0608170.

[38]  D. Lynch,et al.  Handbook of Optical Constants of Solids , 1985 .