Quantitative analysis of phase transitions in two-dimensional XY models using persistent homology

We use persistent homology and persistence images as an observable of three different variants of the two-dimensional XY model in order to identify and study their phase transitions. We examine models with the classical XY action, a topological lattice action, and an action with an additional nematic term. In particular, we introduce a new way of computing the persistent homology of lattice spin model configurations and, by considering the fluctuations in the output of logistic regression and k-nearest neighbours models trained on persistence images, we develop a methodology to extract estimates of the critical temperature and the critical exponent of the correlation length. We put particular emphasis on finite-size scaling behaviour and producing estimates with quantifiable error. For each model we successfully identify its phase transition(s) and are able to get an accurate determination of the critical temperatures and critical exponents of the correlation length.

[2]  G. Carlsson Persistent homology and applied homotopy theory , 2020, 2004.00738.

[3]  Makoto Yamada,et al.  Persistence Fisher Kernel: A Riemannian Manifold Kernel for Persistence Diagrams , 2018, NeurIPS.

[4]  M. Yahiro,et al.  Persistent homology analysis of deconfinement transition in effective Polyakov-line model , 2018, International Journal of Modern Physics A.

[5]  Alan M. Ferrenberg,et al.  New Monte Carlo technique for studying phase transitions. , 1988, Physical review letters.

[6]  H. Edelsbrunner,et al.  Persistent Homology — a Survey , 2022 .

[7]  Alan M. Ferrenberg,et al.  Optimized Monte Carlo data analysis. , 1989, Physical review letters.

[8]  Martin Hasenbusch The two-dimensional XY model at the transition temperature : a high-precision Monte Carlo study , 2005 .

[9]  Dimitrios Bachtis,et al.  Extending machine learning classification capabilities with histogram reweighting , 2020, Physical review. E.

[10]  Alberto Dassatti,et al.  giotto-tda: A Topological Data Analysis Toolkit for Machine Learning and Data Exploration , 2020, J. Mach. Learn. Res..

[11]  Ke Liu,et al.  Probing hidden spin order with interpretable machine learning , 2018, Physical Review B.

[12]  Michael Kastner Phase transitions and configuration space topology , 2008 .

[13]  F. Niedermayer,et al.  Topological lattice actions for the 2d XY model , 2012, 1212.0579.

[14]  J. Chalker,et al.  Deconfinement transitions in a generalised XY model , 2017, 1706.01475.

[15]  A. Trombettoni,et al.  Detecting composite orders in layered models via machine learning , 2020, New Journal of Physics.

[16]  Sayan Mukherjee,et al.  Fréchet Means for Distributions of Persistence Diagrams , 2012, Discrete & Computational Geometry.

[17]  Lei Wang,et al.  Discovering phase transitions with unsupervised learning , 2016, 1606.00318.

[18]  Roberto Franzosi,et al.  Persistent homology analysis of phase transitions. , 2016, Physical review. E.

[19]  Heather A Harrington,et al.  Topological data analysis of continuum percolation with disks. , 2018, Physical review. E.

[20]  C. Chrysostomou,et al.  The critical temperature of the 2D-Ising model through deep learning autoencoders , 2020, The European Physical Journal B.

[21]  S. M. Bhattacharjee,et al.  A measure of data collapse for scaling , 2001, cond-mat/0102515.

[22]  Yoshihiko Hasegawa,et al.  Topological Persistence Machine of Phase Transitions , 2020, Physical review. E.

[23]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[25]  Gunnar E. Carlsson,et al.  Topology and data , 2009 .

[26]  Mason A. Porter,et al.  A roadmap for the computation of persistent homology , 2015, EPJ Data Science.

[27]  F. F. Fanchini,et al.  Unveiling phase transitions with machine learning , 2019, Physical Review B.

[28]  Peter Bubenik,et al.  Categorification of Persistent Homology , 2012, Discret. Comput. Geom..

[29]  C. Giannetti,et al.  Machine Learning as a universal tool for quantitative investigations of phase transitions , 2018, Nuclear Physics B.

[30]  Tanaka Akinori,et al.  Detection of Phase Transition via Convolutional Neural Networks , 2016, 1609.09087.

[31]  R. Ghrist Barcodes: The persistent topology of data , 2007 .

[32]  Gary Shiu,et al.  Quantitative and interpretable order parameters for phase transitions from persistent homology , 2020, Physical Review B.

[33]  David Hinkley,et al.  Bootstrap Methods: Another Look at the Jackknife , 2008 .

[34]  Herbert Edelsbrunner,et al.  Topological Persistence and Simplification , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[35]  Wolff,et al.  Collective Monte Carlo updating for spin systems. , 1989, Physical review letters.

[36]  Roger G. Melko,et al.  Machine learning phases of matter , 2016, Nature Physics.

[37]  Manuel Scherzer,et al.  Machine Learning of Explicit Order Parameters: From the Ising Model to SU(2) Lattice Gauge Theory , 2017, 1705.05582.

[38]  Joaquin F. Rodriguez-Nieva,et al.  Identifying topological order through unsupervised machine learning , 2018, Nature Physics.

[39]  坂上 貴之 書評 Computational Homology , 2005 .

[40]  Henry Adams,et al.  Persistence Images: A Stable Vector Representation of Persistent Homology , 2015, J. Mach. Learn. Res..

[41]  M. Pepe,et al.  Topological lattice actions , 2010, 1009.2146.

[42]  Frédéric Chazal,et al.  The density of expected persistence diagrams and its kernel based estimation , 2018, SoCG.

[43]  N. Kien,et al.  Correlation length in a generalized two-dimensional XY model , 2018, Physical Review B.

[44]  S. Huber,et al.  Learning phase transitions by confusion , 2016, Nature Physics.