The Application of Computational Modeling to Pharmaceutical Materials Science

Computational modeling is a ubiquitous technique in materials science, but until recently this approach has not been widely applied to the drug development process. The formation of particles, their kinematics, and their response to processing stresses are increasingly being studied using computational techniques (computational fluid dynamics and discrete element analysis). These computational techniques can be predictive tools to guide scientists who are designing pharmaceutical dosage forms with specific macroscopic properties. This article gives an overview of the types of computational methods that are used in pharmaceutical materials science and provides examples of their application to some problems from the literature and the authors' own work.

[1]  Christopher E. Brennen,et al.  Chute Flows of Granular Material: Some Computer Simulations , 1985 .

[2]  N. Chigier,et al.  A CFD study of the throat during aerosol drug delivery using heliox and air , 2003 .

[3]  Tatsuo Yanagita THREE-DIMENSIONAL CELLULAR AUTOMATON MODEL OF SEGREGATION OF GRANULAR MATERIALS IN A ROTATING CYLINDER , 1999 .

[4]  W. Finlay,et al.  Predicting extrathoracic deposition from dry powder inhalers , 2004 .

[5]  Meakin,et al.  Three-dimensional model for particle-size segregation by shaking. , 1992, Physical review letters.

[6]  Alexander V. Potapov,et al.  Making a Discrete Grain Breakage model practical for comminution equipment performance simulation , 2004 .

[7]  Christine M. Hrenya,et al.  Discrete-particle simulations of cohesive granular flow using a square-well potential , 2004 .

[8]  Alexander V. Potapov,et al.  Computer simulation of hopper flow , 1996 .

[9]  Fernando J. Muzzio,et al.  Simulation and experiments of mixing and segregation in a tote blender , 2005 .

[10]  Christopher E. Brennen,et al.  Computer simulation of granular shear flows , 1985, Journal of Fluid Mechanics.

[11]  Colin Thornton,et al.  Numerical simulations of impact breakage of a spherical crystalline agglomerate , 2000 .

[12]  Alexander V. Potapov,et al.  Computer simulation of shear-induced particle attrition , 1997 .

[13]  Kajiwara Yoshimasa,et al.  Flow dynamics of granular materials in a hopper. , 1988 .

[14]  Joseph F. Pekny,et al.  Effect of system size on particle-phase stress and microstructure formation , 2004 .

[15]  Paul Langston,et al.  Distinct element modelling of non-spherical frictionless particle flow , 2004 .

[16]  Fritz B. Prinz,et al.  Monte Carlo simulation of particulate matter segregation , 1986 .

[17]  John Bridgwater,et al.  Towards a parameter characterising attrition , 1999 .

[18]  Troy Shinbrot,et al.  Computational approaches to granular segregation in tumbling blenders , 2001 .

[19]  P. Cundall,et al.  A discrete numerical model for granular assemblies , 1979 .

[20]  Alexander V. Potapov,et al.  Computer simulation of impact-induced particle breakage , 1994 .

[21]  C. Wassgren,et al.  Particle segregation in vibrofluidized beds due to buoyant forces. , 2001, Physical review letters.

[22]  D. C. Rapaport,et al.  Granular flow from a silo: Discrete-particle simulations in three dimensions , 2001 .

[23]  David F. Fletcher,et al.  Prospects for the Modelling and Design of Spray Dryers in the 21st Century , 2003 .

[24]  Troy Shinbrot,et al.  Experimentally validated computations of flow, mixing and segregation of non-cohesive grains in 3D tumbling blenders , 2000 .

[25]  Mridul Gautam,et al.  Computer simulation of bubbles in large-particle fluidized beds , 1998 .

[26]  Keith Masters,et al.  SCALE-UP OF SPRAY DRYERS , 1994 .

[27]  Mojtaba Ghadiri,et al.  Impact attrition of particulate solids. Part 1: A theoretical model of chipping , 2002 .

[28]  R. Fox,et al.  Application of the direct quadrature method of moments to polydisperse gas–solid fluidized beds , 2004 .

[29]  Warren H. Finlay,et al.  Particle deposition measurements and numerical simulation in a highly idealized mouth-throat , 2004 .

[30]  Mojtaba Ghadiri,et al.  Effect of the impact angle on the breakage of agglomerates: a numerical study using DEM , 2003 .

[31]  Aibing Yu,et al.  Simulated and measured flow of granules in a bladed mixer—a detailed comparison , 2001 .

[32]  D. Wolf,et al.  Force Schemes in Simulations of Granular Materials , 1996 .

[33]  Jacek Tejchman,et al.  Application of a cellular automaton to simulations of granular flow in silos , 2005 .

[34]  Athanasia M. Goula,et al.  Influence of Spray Drying Conditions on Residue Accumulation—Simulation Using CFD , 2004 .

[35]  D. Wolf,et al.  A cellular automaton for grains in a rotating drum , 1999 .

[36]  Jin Y. Ooi,et al.  Silo pressure predictions using discrete–element and finite–element analyses , 1998, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[37]  F. Maio,et al.  Comparison of contact-force models for the simulation of collisions in DEM-based granular flow codes , 2004 .

[38]  Hans J. Herrmann,et al.  Vectorial Cellular Automaton for the Stress in Granular Media , 1997 .

[39]  Haim Kalman,et al.  DEM simulation for attrition of salt during dilute-phase pneumatic conveying , 2003 .

[40]  A. Rosato,et al.  Vibratory particle size sorting in multi-component systems , 1991 .

[41]  N. K. Sinha,et al.  Drag on non-spherical particles: an evaluation of available methods , 1999 .

[42]  Mahmood A. Khwaja,et al.  An ellipse-based discrete element model for granular materials , 1993 .

[43]  T. Chung Computational Fluid Dynamics: FOUR. AUTOMATIC GRID GENERATION, ADAPTIVE METHODS, AND COMPUTING TECHNIQUES , 2002 .

[44]  R. L. Braun,et al.  Viscosity, granular‐temperature, and stress calculations for shearing assemblies of inelastic, frictional disks , 1986 .

[45]  Judy A Raper,et al.  Effect of design on the performance of a dry powder inhaler using computational fluid dynamics. Part 1: Grid structure and mouthpiece length. , 2004, Journal of pharmaceutical sciences.

[46]  Wilmott,et al.  Cellular-automaton model for segregation of a two-species granular flow. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[47]  Christine M. Hrenya,et al.  Effects of particle‐phase turbulence in gas‐solid flows , 1997 .

[48]  Behringer,et al.  Cellular automata models of granular flow. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[49]  He Yurong,et al.  Size segregation of binary mixture of solids in bubbling fluidized beds , 2003 .

[50]  Evangelos Tsotsas,et al.  Mixing of particles in rotary drums: A comparison of discrete element simulations with experimental results and penetration models for thermal processes , 2006 .

[51]  J. M. Ottino,et al.  Mixing and segregation of granular materials in chute flows. , 1999, Chaos.

[52]  J.A.M. Kuipers,et al.  Computational fluid dynamics for dense gas–solid fluidized beds: a multi-scale modeling strategy , 2004 .

[53]  Colin Thornton,et al.  Numerical simulation of the impact fracture and fragmentation of agglomerates , 1996 .

[54]  C. Wassgren,et al.  Erratum: Particle Segregation in Vibrofluidized Beds due to Buoyant Forces [Phys. Rev. Lett. 87, 084302 (2001)] , 2002 .

[55]  Said Elghobashi,et al.  A two‐equation turbulence model for two‐phase flows , 1983 .

[56]  Jpk Seville,et al.  The influence of DEM simulation parameters on the particle behaviour in a V-mixer , 2002 .

[57]  Paul W. Cleary,et al.  DEM modelling of industrial granular flows: 3D case studies and the effect of particle shape on hopper discharge , 2002 .

[58]  W. Finlay,et al.  A new add-on spacer design concept for dry-powder inhalers , 2004 .