The pitman nearness criterion and its determination
暂无分享,去创建一个
C. R. Rao | R. Mason | C R Rao | Robert D. Mason | I. P. Reating | C. Rao
[1] Robert L. Mason,et al. Practical Relevance of an Alternative Criterion in Estimation , 1985 .
[2] Calyampudi R. Rao. Some Comments on the Minimum mean Square Error as a Criterion of Estimation. , 1980 .
[3] C. Blyth. Some Probability Paradoxes in Choice from among Random Alternatives , 1972 .
[4] J. M. Maynard,et al. An Approximate Pitman-Type "Close" Estimator for the Negative Binomial Parameter p* , 1972 .
[5] Max Halperin,et al. On Inverse Estimation in Linear Regression , 1970 .
[6] S. Zacks,et al. The Efficiencies in Small Samples of the Maximum Likelihood and Best Unbiased Estimators of Reliability Functions , 1966 .
[7] N L JOHNSON,et al. On the comparison of estimators. , 1950, Biometrika.
[8] E. J. G. Pitman,et al. The “closest” estimates of statistical parameters , 1937, Mathematical Proceedings of the Cambridge Philosophical Society.
[9] J. Keating. Estimators of percentiles based on absolute loss , 1983 .
[10] D. Dyer,et al. On the relative behavior of estimators of the characteristic life in the exponential failure model , 1981 .
[11] D. Dyer. On the Comparison of Estimators in a Rectangular Distribution , 1979 .
[12] J. Keating,et al. On the relative behavior of estimators of reliability/survivability , 1979 .
[13] J. Keating,et al. A Further Look at the Comparison of Normal Percentile Estimators , 1979 .
[14] J. Tukey. A survey of sampling from contaminated distributions , 1960 .
[15] C. Stein. Inadmissibility of the Usual Estimator for the Mean of a Multivariate Normal Distribution , 1956 .