The pitman nearness criterion and its determination

A general method for determining Pitman Nearness is given In the case of univariate estimators. This method is then applied to some estimation problems. The concept of Pitman Nearness is also generalized to the multivariate case. The James-Stein estimators are used to illustrate the multivariate comparison.

[1]  Robert L. Mason,et al.  Practical Relevance of an Alternative Criterion in Estimation , 1985 .

[2]  Calyampudi R. Rao Some Comments on the Minimum mean Square Error as a Criterion of Estimation. , 1980 .

[3]  C. Blyth Some Probability Paradoxes in Choice from among Random Alternatives , 1972 .

[4]  J. M. Maynard,et al.  An Approximate Pitman-Type "Close" Estimator for the Negative Binomial Parameter p* , 1972 .

[5]  Max Halperin,et al.  On Inverse Estimation in Linear Regression , 1970 .

[6]  S. Zacks,et al.  The Efficiencies in Small Samples of the Maximum Likelihood and Best Unbiased Estimators of Reliability Functions , 1966 .

[7]  N L JOHNSON,et al.  On the comparison of estimators. , 1950, Biometrika.

[8]  E. J. G. Pitman,et al.  The “closest” estimates of statistical parameters , 1937, Mathematical Proceedings of the Cambridge Philosophical Society.

[9]  J. Keating Estimators of percentiles based on absolute loss , 1983 .

[10]  D. Dyer,et al.  On the relative behavior of estimators of the characteristic life in the exponential failure model , 1981 .

[11]  D. Dyer On the Comparison of Estimators in a Rectangular Distribution , 1979 .

[12]  J. Keating,et al.  On the relative behavior of estimators of reliability/survivability , 1979 .

[13]  J. Keating,et al.  A Further Look at the Comparison of Normal Percentile Estimators , 1979 .

[14]  J. Tukey A survey of sampling from contaminated distributions , 1960 .

[15]  C. Stein Inadmissibility of the Usual Estimator for the Mean of a Multivariate Normal Distribution , 1956 .