Degradative behaviour of polymeric matrices in (sub)dermal and muscle tissue of the rat: a quantitative study.

[1]  C. V. van Blitterswijk,et al.  A new biodegradable matrix as part of a cell seeded skin substitute for the treatment of deep skin defects: a physico-chemical characterisation. , 1993, Clinical materials.

[2]  C A van Blitterswijk,et al.  Cell-seeding and in vitro biocompatibility evaluation of polymeric matrices of PEO/PBT copolymers and PLLA. , 1993, Biomaterials.

[3]  S. Gogolewvki Resorbable polymers for internal fixation. , 1992 .

[4]  S. Li,et al.  New insights on the degradation of bioresorbable polymeric devices based on lactic and glycolic acids. , 1992, Clinical materials.

[5]  D. Williams,et al.  Mechanisms of biodegradation of implantable polymers. , 1992, Clinical materials.

[6]  C. Blitterswijk,et al.  27. Polymer Reactions Resulting in Bone Bonding: A Review of the Biocompatibility of Polyactive , 1991 .

[7]  J. J. Grote,et al.  New alloplastic tympanic membrane material. , 1991, The American journal of otology.

[8]  P. Dijkstra,et al.  Biocompatibility of poly (DL-lactic acid/glycine) copolymers. , 1991, Clinical materials.

[9]  J. J. Grote,et al.  The behavior of alloplastic tympanic membranes in Staphylococcus aureus-induced middle ear infection. I. Quantitative biocompatibility evaluation. , 1990, Journal of biomedical materials research.

[10]  P Nieuwenhuis,et al.  Enzymatic activity toward poly(L-lactic acid) implants. , 1990, Journal of biomedical materials research.

[11]  J. Dokter,et al.  The use of cultured autologous epidermis in the treatment of extensive burn wounds. , 1990, The Journal of trauma.

[12]  J. J. Grote,et al.  Effect of implantation site on phagocyte/polymer interaction and fibrous capsule formation. , 1988, Biomaterials.

[13]  D. Williams,et al.  The biodegradation of poly(ether urethanes). , 1987, Journal of biomedical materials research.

[14]  D. Williams,et al.  The enzymatic degradation of polymers in vitro. , 1987, Journal of biomedical materials research.

[15]  B. van der Lei,et al.  Sequential studies of arterial wall regeneration in microporous, compliant, biodegradable small-caliber vascular grafts in rats. , 1987, The Journal of thoracic and cardiovascular surgery.

[16]  S. R. Taylor,et al.  Effect of surface texture on the soft tissue response to polymer implants. , 1983, Journal of biomedical materials research.

[17]  G. Wilkes,et al.  Structure–property relationships of a new series of segmented polyether–polyester copolymers , 1981 .

[18]  R. White,et al.  Histopathologic observations after short-term implantation of two porous elastomers in dogs. , 1981, Biomaterials.

[19]  A. M. Reed,et al.  Biodegradable polymers for use in surgery — poly(ethylene oxide)/poly(ethylene terephthalate) (PEO/PET) copolymers: 2. In vitro degradation , 1981 .

[20]  S. Brown,et al.  Implant site infection rates with porous and dense materials. , 1979, Journal of biomedical materials research.

[21]  D. Williams,et al.  Enzyme-accelerated hydrolysis of polyglycolic acid. , 1977, Journal of bioengineering.

[22]  R. Edlich,et al.  The role of implant porosity on the development of infection. , 1977, Surgery, gynecology & obstetrics.

[23]  A. Clark,et al.  The influence of surface chemistry on implant interface histology: a theoretical basis for implant materials selection. , 1976, Journal of biomedical materials research.

[24]  N K Wood,et al.  The significance of implant shape in experimental testing of biological materials: disc vs. rod. , 1970, Journal of biomedical materials research.

[25]  R. Oglesby,et al.  The behavior of biological materials at different sites of implantation. , 1968, Journal of biomedical materials research.

[26]  C. Fajers,et al.  Studies on wound healing and trauma. Part 2. Morphological basis of the retarding effect of femoral fracture on healing of skin incisions. , 2009, Acta pathologica et microbiologica Scandinavica.