A COMPREHENSIVE ANALYSIS OF UNCERTAINTIES AFFECTING THE STELLAR MASS–HALO MASS RELATION FOR 0 < z < 4

We conduct a comprehensive analysis of the relationship between central galaxies and their host dark matter halos, as characterized by the stellar mass–halo mass (SM–HM) relation, with rigorous consideration of uncertainties. Our analysis focuses on results from the abundance matching technique, which assumes that every dark matter halo or subhalo above a specific mass threshold hosts one galaxy. We provide a robust estimate of the SM–HM relation for 0 < z < 1 and discuss the quantitative effects of uncertainties in observed galaxy stellar mass functions (including stellar mass estimates and counting uncertainties), halo mass functions (including cosmology and uncertainties from substructure), and the abundance matching technique used to link galaxies to halos (including scatter in this connection). Our analysis results in a robust estimate of the SM–HM relation and its evolution from z = 0 to z = 4. The shape and the evolution are well constrained for z < 1. The largest uncertainties at these redshifts are due to stellar mass estimates (0.25 dex uncertainty in normalization); however, failure to account for scatter in stellar masses at fixed halo mass can lead to errors of similar magnitude in the SM–HM relation for central galaxies in massive halos. We also investigate the SM–HM relation to z = 4, although the shape of the relation at higher redshifts remains fairly unconstrained when uncertainties are taken into account. We find that the integrated star formation at a given halo mass peaks at 10%–20% of available baryons for all redshifts from 0 to 4. This peak occurs at a halo mass of 7 × 1011 M☉ at z = 0 and this mass increases by a factor of 5 to z = 4. At lower and higher masses, star formation is substantially less efficient, with stellar mass scaling as M* ∼  M2.3h at low masses and M* ∼ M0.29h at high masses. The typical stellar mass for halos with mass less than 1012 M☉ has increased by 0.3–0.45 dex for halos since z ∼ 1. These results will provide a powerful tool to inform galaxy evolution models.

[1]  Leiden,et al.  COSMIC EVOLUTION OF VIRIAL AND STELLAR MASS IN MASSIVE EARLY-TYPE GALAXIES , 2009, 0911.2236.

[2]  S. White,et al.  How do galaxies populate dark matter haloes , 2009, 0909.4305.

[3]  F. Castander,et al.  Simulating the Universe with MICE: The abundance of massive clusters , 2009, 0907.0019.

[4]  Y. Jing,et al.  Modelling galaxy stellar mass evolution from z ∼ 0.8 to today , 2009, 0911.1864.

[5]  D. Thompson,et al.  THE BIMODAL GALAXY STELLAR MASS FUNCTION IN THE COSMOS SURVEY TO z ∼ 1: A STEEP FAINT END AND A NEW GALAXY DICHOTOMY , 2009, 0910.5720.

[6]  S. Percival,et al.  THE IMPACT OF SYSTEMATIC UNCERTAINTIES IN STELLAR PARAMETERS ON INTEGRATED SPECTRA OF STELLAR POPULATIONS , 2009, 0908.0951.

[7]  Martin White,et al.  What determines satellite galaxy disruption , 2009, 0907.0702.

[8]  T. Ichikawa,et al.  MOIRCS DEEP SURVEY. IV. EVOLUTION OF GALAXY STELLAR MASS FUNCTION BACK TO z ∼ 3 , 2009, 0907.0133.

[9]  P. Dokkum,et al.  A NEAR-INFRARED SPECTROSCOPIC SURVEY OF K-SELECTED GALAXIES AT z∼ 2.3: COMPARISON OF STELLAR POPULATION SYNTHESIS CODES AND CONSTRAINTS FROM THE REST-FRAME NIR , 2009, 0906.2012.

[10]  B. Garilli,et al.  The zCOSMOS Survey. The dependence of clustering on luminosity and stellar mass at z=0.2-1 , 2009, 0906.1807.

[11]  J. Gunn,et al.  THE PROPAGATION OF UNCERTAINTIES IN STELLAR POPULATION SYNTHESIS MODELING. II. THE CHALLENGE OF COMPARING GALAXY EVOLUTION MODELS TO OBSERVATIONS , 2009, 0904.0002.

[12]  R. Somerville,et al.  CONSTRAINTS ON THE RELATIONSHIP BETWEEN STELLAR MASS AND HALO MASS AT LOW AND HIGH REDSHIFT , 2009, 0903.4682.

[13]  S. White,et al.  The distribution of stellar mass in the low‐redshift Universe , 2009, 0901.0706.

[14]  H. Ferguson,et al.  BIASES AND UNCERTAINTIES IN PHYSICAL PARAMETER ESTIMATES OF LYMAN BREAK GALAXIES FROM BROADBAND PHOTOMETRY , 2008, 0812.5111.

[15]  A. Evrard,et al.  The Effect of Gas Physics on the Halo Mass Function , 2008, 0809.2805.

[16]  H. Mo,et al.  GALAXY GROUPS IN THE SDSS DR4. III. THE LUMINOSITY AND STELLAR MASS FUNCTIONS , 2008, 0808.0539.

[17]  S. More,et al.  Satellite kinematics – II. The halo mass–luminosity relation of central galaxies in SDSS , 2008, 0807.4532.

[18]  R. Wechsler,et al.  SUBMITTED TO THE ASTROPHYSICAL JOURNAL Preprint typeset using LATEX style emulateapj v. 10/09/06 CONNECTING GALAXIES, HALOS, AND STAR FORMATION RATES ACROSS COSMIC TIME , 2008 .

[19]  R. Wechsler,et al.  THE GALAXY CONTENT OF SDSS CLUSTERS AND GROUPS , 2007, 0710.3780.

[20]  S. Wuyts,et al.  THE EVOLUTION OF THE STELLAR MASS FUNCTION OF GALAXIES FROM z = 4.0 AND THE FIRST COMPREHENSIVE ANALYSIS OF ITS UNCERTAINTIES: EVIDENCE FOR MASS-DEPENDENT EVOLUTION , 2008, 0811.1773.

[21]  C. Steidel,et al.  A STEEP FAINT-END SLOPE OF THE UV LUMINOSITY FUNCTION AT z ∼ 2–3: IMPLICATIONS FOR THE GLOBAL STELLAR MASS DENSITY AND STAR FORMATION IN LOW-MASS HALOS , 2008, 0810.2788.

[22]  J. Gunn,et al.  THE ASTROPHYSICAL JOURNAL Preprint typeset using LATEX style emulateapj v. 10/09/06 THE PROPAGATION OF UNCERTAINTIES IN STELLAR POPULATION SYNTHESIS MODELING I: THE RELEVANCE OF UNCERTAIN ASPECTS OF STELLAR EVOLUTION AND THE IMF TO THE DERIVED PHYSICAL PR , 2022 .

[23]  Xiaohu Yang,et al.  THE SUBHALO–SATELLITE CONNECTION AND THE FATE OF DISRUPTED SATELLITE GALAXIES , 2008, 0808.2526.

[24]  S. Driver,et al.  On the galaxy stellar mass function, the mass-metallicity relation, and the implied baryonic mass function , 2008, 0804.2892.

[25]  Michael S. Warren,et al.  Toward a Halo Mass Function for Precision Cosmology: The Limits of Universality , 2008, 0803.2706.

[26]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[27]  S. Faber,et al.  Downsizing by shutdown in red galaxies , 2008, 0801.1673.

[28]  Cambridge,et al.  The evolution of stellar mass and the implied star formation history , 2008, 0801.1594.

[29]  P. Dokkum,et al.  Evidence of Cosmic Evolution of the Stellar Initial Mass Function , 2007, 0710.0875.

[30]  G. Rieke,et al.  The Stellar Mass Assembly of Galaxies from z = 0 to z = 4: Analysis of a Sample Selected in the Rest-Frame Near-Infrared with Spitzer , 2007, 0709.1354.

[31]  S. Colombi,et al.  Baryon Dynamics, Dark Matter Substructure, and Galaxies , 2006, astro-ph/0604393.

[32]  R. Dav'e The galaxy stellar mass-star formation rate relation: evidence for an evolving stellar initial mass function? , 2007, 0710.0381.

[33]  Anna Pasquali,et al.  Galaxy Groups in the SDSS DR4. I. The Catalog and Basic Properties , 2007, 0707.4640.

[34]  J. Tumlinson Carbon-enhanced Hyper-Metal-poor Stars and the Stellar IMF at Low Metallicity , 2007, 0707.0816.

[35]  S. Driver,et al.  The Millennium Galaxy Catalogue: the B-band attenuation of bulge and disc light and the implied cosmic dust and stellar mass densities , 2007, 0704.2140.

[36]  J. Brinchmann,et al.  The VIMOS VLT Deep Survey. The assembly history of the stellar mass in galaxies: from the young to t , 2007, 0704.1600.

[37]  Felipe Marin,et al.  Modeling the Galaxy Three-Point Correlation Function , 2007, 0704.0255.

[38]  P. Schneider,et al.  Strong-lensing optical depths in a ΛCDM universe – II. The influence of the stellar mass in galaxies , 2007, astro-ph/0703803.

[39]  I. Zehavi,et al.  Galaxy Evolution from Halo Occupation Distribution Modeling of DEEP2 and SDSS Galaxy Clustering , 2007, astro-ph/0703457.

[40]  E. Gawiser,et al.  Systematic Uncertainties in Stellar Mass Estimation for Distinct Galaxy Populations , 2007, astro-ph/0701749.

[41]  J. Rhodes,et al.  The Sloan Lens ACS Survey. IV. The Mass Density Profile of Early-Type Galaxies out to 100 Effective Radii , 2007, astro-ph/0701589.

[42]  G. Kauffmann,et al.  Luminosity dependence of the spatial and velocity distributions of galaxies: semi-analytic models versus the Sloan Digital Sky Survey , 2007, astro-ph/0701218.

[43]  C. Conselice,et al.  Evolution in the Halo Masses of Isolated Galaxies between z ~ 1 and z ~ 0: From DEEP2 to SDSS , 2006, astro-ph/0607204.

[44]  S. Roweis,et al.  K-Corrections and Filter Transformations in the Ultraviolet, Optical, and Near-Infrared , 2006, astro-ph/0606170.

[45]  A. G. Bruzual On TP-AGB stars and the mass of galaxies , 2006, Proceedings of the International Astronomical Union.

[46]  A. Heavens,et al.  The star formation histories of galaxies in the sloan digital sky survey , 2006, astro-ph/0608531.

[47]  H. Rix,et al.  Comparing Dynamical and Photometric Mass Estimates of Low- and High-Redshift Galaxies: Random and Systematic Uncertainties , 2006, astro-ph/0607649.

[48]  S. Faber,et al.  On the Age and Metallicity Estimation of Spiral Galaxies Using Optical and Near-Infrared Photometry , 2006, astro-ph/0605425.

[49]  R. Wechsler,et al.  Close Galaxy Counts as a Probe of Hierarchical Structure Formation , 2006, astro-ph/0604506.

[50]  G. Kauffmann,et al.  Modelling galaxy clustering in a high-resolution simulation of structure formation , 2006, astro-ph/0603546.

[51]  M. Fukugita,et al.  The History of Cosmological Star Formation: Three Independent Approaches and a Critical Test Using the Extragalactic Background Light , 2006, astro-ph/0603257.

[52]  P. Salucci,et al.  New Relationships between Galaxy Properties and Host Halo Mass, and the Role of Feedbacks in Galaxy Formation , 2006, astro-ph/0601577.

[53]  A. Hopkins,et al.  On the Normalization of the Cosmic Star Formation History , 2006, astro-ph/0601463.

[54]  UCOLick,et al.  Submitted to ApJ Preprint typeset using L ATEX style emulateapj v. 6/22/04 THE MASS ASSEMBLY HISTORY OF FIELD GALAXIES: DETECTION OF AN EVOLVING MASS LIMIT FOR STAR FORMING GALAXIES , 2005 .

[55]  R. Wechsler,et al.  Modeling Luminosity-dependent Galaxy Clustering through Cosmic Time , 2005, astro-ph/0512234.

[56]  Princeton University.,et al.  The Non-Parametric Model for Linking Galaxy Luminosity with Halo/Subhalo Mass: Are First Brightest Galaxies Special? , 2005, astro-ph/0701096.

[57]  A. Cooray Halo model at its best: constraints on conditional luminosity functions from measured galaxy statistics , 2005, astro-ph/0509033.

[58]  Michael S. Warren,et al.  Precision Determination of the Mass Function of Dark Matter Halos , 2005, astro-ph/0506395.

[59]  R. Davies,et al.  The SAURON project - IV. The mass-to-light ratio, the virial mass estimator and the Fundamental Plane of elliptical and lenticular galaxies , 2005, astro-ph/0505042.

[60]  J. Brinkmann,et al.  Galaxy halo masses and satellite fractions from galaxy–galaxy lensing in the Sloan Digital Sky Survey: stellar mass, luminosity, morphology and environment dependencies , 2005, astro-ph/0511164.

[61]  Christopher D. Martin,et al.  Spitzer View on the Evolution of Star-forming Galaxies from z = 0 to z ~ 3 , 2005, astro-ph/0505101.

[62]  V. Springel The Cosmological simulation code GADGET-2 , 2005, astro-ph/0505010.

[63]  C. Skordis,et al.  Fast and reliable Markov chain Monte Carlo technique for cosmological parameter estimation , 2005 .

[64]  L. Kewley,et al.  Aperture Effects on Star Formation Rate, Metallicity, and Reddening , 2005, astro-ph/0501229.

[65]  T. Beers,et al.  Observational Evidence for a Different Initial Mass Function in the Early Galaxy , 2004, astro-ph/0412423.

[66]  J. Tinker,et al.  On the Mass-to-Light Ratio of Large-Scale Structure , 2004, astro-ph/0411777.

[67]  C. Maraston Evolutionary population synthesis: models, analysis of the ingredients and application to high‐z galaxies , 2004, astro-ph/0410207.

[68]  J. Mohr,et al.  K-band Properties of Galaxy Clusters and Groups: Brightest Cluster Galaxies and Intracluster Light , 2004, astro-ph/0408557.

[69]  U. Toronto,et al.  Evolutionary synthesis of galaxies at high spectral resolution with the code PEGASE-HR. Metallicity and age tracers , 2004, astro-ph/0408419.

[70]  D. Nagai,et al.  The Astrophysical Journal, submitted Preprint typeset using L ATEX style emulateapj v. 11/12/01 THE RADIAL DISTRIBUTION OF GALAXIES IN ΛCDM CLUSTERS , 2004 .

[71]  A. Heavens,et al.  The mass function of the stellar component of galaxies in the Sloan Digital Sky Survey , 2004, astro-ph/0406299.

[72]  M. Bershady,et al.  Publications of the Astronomical Society of the Pacific , 2004 .

[73]  R. Wechsler,et al.  Modeling Galaxy-mass Correlations in Dissipationless Simulations , 2022 .

[74]  P. Norberg,et al.  Probing dark matter haloes with satellite kinematics , 2004, astro-ph/0404033.

[75]  J. Ostriker,et al.  Linking halo mass to galaxy luminosity , 2004, astro-ph/0402500.

[76]  A. Klypin,et al.  The Tumultuous Lives of Galactic Dwarfs and the Missing Satellites Problem , 2004, astro-ph/0401088.

[77]  Potsdam,et al.  The Dark Side of the Halo Occupation Distribution , 2003, astro-ph/0308519.

[78]  A. Connolly,et al.  The Galaxy-Mass Correlation Function Measured from Weak Lensing in the Sloan Digital Sky Survey , 2003, astro-ph/0312036.

[79]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[80]  G. Chabrier Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.

[81]  Edward J. Wollack,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters , 2003, astro-ph/0302209.

[82]  M. Neyrinck,et al.  Understanding the PSCz galaxy power spectrum with N-body simulations , 2003, astro-ph/0302003.

[83]  Daniel H. McIntosh,et al.  A First Estimate of the Baryonic Mass Function of Galaxies , 2003, astro-ph/0301616.

[84]  J. Brinkmann,et al.  Observing the Dark Matter Density Profile of Isolated Galaxies , 2003, astro-ph/0301360.

[85]  S. Yi Uncertainties of Synthetic Integrated Colors as Age Indicators , 2002, astro-ph/0210202.

[86]  R. Nichol,et al.  Stellar masses and star formation histories for 105 galaxies from the Sloan Digital Sky Survey , 2002, astro-ph/0204055.

[87]  Lars Hernquist,et al.  Galaxy Clustering and Galaxy Bias in a ΛCDM Universe , 2002, astro-ph/0212356.

[88]  H. Mo,et al.  Constraining galaxy formation and cosmology with the conditional luminosity function of galaxies , 2002, astro-ph/0207019.

[89]  R. Sheth,et al.  Halo Models of Large Scale Structure , 2002, astro-ph/0206508.

[90]  U. Seljak,et al.  Virial masses of galactic haloes from galaxy–galaxy lensing: theoretical modelling and application to Sloan Digital Sky Survey data , 2002, astro-ph/0201448.

[91]  D. Weinberg,et al.  The Halo Occupation Distribution: Toward an Empirical Determination of the Relation between Galaxies and Mass , 2001, astro-ph/0109001.

[92]  R. Wechsler,et al.  Galaxy halo occupation at high redshift , 2001, astro-ph/0106293.

[93]  R. Ellis,et al.  The 2dF galaxy redshift survey: near-infrared galaxy luminosity functions , 2000, astro-ph/0012429.

[94]  Walter A. Siegmund,et al.  The Sloan Digital Sky Survey: Technical Summary , 2000, astro-ph/0006396.

[95]  H. M. P. Couchman,et al.  The mass function of dark matter haloes , 2000, astro-ph/0005260.

[96]  S. M. Fall,et al.  A Simple Model for the Absorption of Starlight by Dust in Galaxies , 2000, astro-ph/0003128.

[97]  A. Kinney,et al.  The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.

[98]  Denis Foo Kune,et al.  Starburst99: Synthesis Models for Galaxies with Active Star Formation , 1999, astro-ph/9902334.

[99]  A. Klypin,et al.  The Origin and Evolution of Halo Bias in Linear and Nonlinear Regimes , 1998, astro-ph/9812311.

[100]  Stefan Gottloeber,et al.  Galaxies in N-Body Simulations: Overcoming the Overmerging Problem , 1997, astro-ph/9708191.

[101]  A. Klypin,et al.  Evolution of Bias in Different Cosmological Models , 1998, astro-ph/9809202.

[102]  G. Bryan,et al.  Statistical Properties of X-Ray Clusters: Analytic and Numerical Comparisons , 1997, astro-ph/9710107.

[103]  A. Klypin,et al.  Adaptive Refinement Tree: A New High-Resolution N-Body Code for Cosmological Simulations , 1997, astro-ph/9701195.

[104]  A. Bressan,et al.  Uncertainties in the Modeling of Old Stellar Populations , 1996 .

[105]  B. Poggianti,et al.  FROM STARS TO GALAXIES: THE IMPACT OF STELLAR PHYSICS ON GALAXY EVOLUTION , 1996 .

[106]  C. Leitherer,et al.  From stars to galaxies : the impact of stellar physics on galaxy evolution : conference held at Porto Elounda Mare, Crete (Greece), 9-13 October 1995 , 1996 .

[107]  S. White,et al.  The massive halos of spiral galaxies , 1994 .

[108]  P. Salucci,et al.  The mass function of spiral galaxy haloes , 1993 .

[109]  M. Postman,et al.  The morphology-density relation - The group connection , 1984 .

[110]  A. Dressler Galaxy morphology in rich clusters: Implications for the formation and evolution of galaxies , 1980 .

[111]  James E. Gunn,et al.  Evolutionary synthesis of the stellar population in elliptical galaxies. I. Ingredients, broad-band colors, and infrared features , 1976 .

[112]  William H. Press,et al.  Formation of Galaxies and Clusters of Galaxies by Self-Similar Gravitational Condensation , 1974 .

[113]  E. Salpeter The Luminosity function and stellar evolution , 1955 .

[114]  A. Eddington,et al.  The correction of statistics for accidental error , 1940 .