Phänomenologische Modellierung des temperaturabhängigen Verhaltens piezoelektrischer Stapelaktoren
暂无分享,去创建一个
[1] A. Froehlich. Mikromechanisches Modell zur Ermittlung effektiver Materialeigenschaften von piezoelektrischen Polykristallen , 2001 .
[2] André Preumont,et al. Vibration Control of Active Structures: An Introduction , 2018 .
[3] Horst Stöcker. Taschenbuch der Physik - Formeln, Tabellen, Übersichten (2. Aufl.) , 1994 .
[4] T. Ikeda. Fundamentals of piezoelectricity , 1990 .
[5] Theo Fett,et al. Tensile and bending strength of piezoelectric ceramics , 1999 .
[6] Chun-Yi Su,et al. A generalized Prandtl–Ishlinskii model for characterizing the hysteresis and saturation nonlinearities of smart actuators , 2009 .
[7] Zoubeida Ounaies,et al. A hysteresis model for piezoceramic materials , 1999 .
[8] Stephan Rinderknecht,et al. A phenomenological approach to temperature dependent piezo stack actuator modeling , 2013 .
[9] Ralph C. Smith,et al. Domain wall model for ferroelectric hysteresis , 1999, Smart Structures.
[10] D. H. Everett,et al. A general approach to hysteresis. Part 2: Development of the domain theory , 1954 .
[11] K. H. Härdtl,et al. Electrical and mechanical losses in ferroelectric ceramics , 1982 .
[12] Xiaobo Tan,et al. Approximate inversion of the Preisach hysteresis operator with application to control of smart actuators , 2005, IEEE Transactions on Automatic Control.
[13] L. A. Reznichenko,et al. Thermal properties of PZT-based ferroelectric ceramics , 2006 .
[14] Barbara Kaltenbacher,et al. Finite Element Formulation for Ferroelectric Hysteresis of Piezoelectric Materials , 2010 .
[15] Qi Wang. Piezoaktoren für Anwendungen im Kraftfahrzeug, Messtechnik und Modellierung , 2006 .
[16] Xiaobo Tan,et al. Fast inverse compensation of Preisach-type hysteresis operators using field-programmable gate arrays , 2008, 2008 American Control Conference.
[17] John T. Wen,et al. Preisach modeling and compensation for smart material hysteresis , 1995, Other Conferences.
[18] M. Kamlah,et al. Ferroelectric and ferroelastic piezoceramics – modeling of electromechanical hysteresis phenomena , 2001 .
[19] Pavel Krejcí,et al. Compensation of Complex Hysteresis and Creep Effects in Piezoelectrically Actuated Systems —A New Preisach Modeling Approach , 2009, IEEE Transactions on Automatic Control.
[20] Ralph C. Smith,et al. A Domain Wall Model for Hysteresis in Piezoelectric Materials , 1999 .
[21] G. Arends. I und J , 1958 .
[22] Hartmut Janocha,et al. Real-time compensation of hysteresis and creep in piezoelectric actuators , 2000 .
[23] G. Kruger,et al. Coercive field in fine-grained plzt ceramics , 1976 .
[24] Chun-Yi Su,et al. Development of the rate-dependent Prandtl–Ishlinskii model for smart actuators , 2008 .
[25] Chad M. Landis,et al. Continuum thermodynamics of ferroelectric domain evolution: Theory, finite element implementation, and application to domain wall pinning , 2007 .
[26] Mohammed Ismail,et al. The Hysteresis Bouc-Wen Model, a Survey , 2009 .
[27] K. Uchino,et al. Loss mechanisms in piezoelectrics: how to measure different losses separately , 2001, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.
[28] Jonathan Swingler,et al. The effect of relative humidity, temperature and electrical field on leakage currents in piezo-ceramic actuators under dc bias , 2009 .
[29] Santosh Devasia,et al. A Survey of Control Issues in Nanopositioning , 2007, IEEE Transactions on Control Systems Technology.
[30] Gérard A. Maugin,et al. Thermodynamical formulation for coupled electromechanical hysteresis effects—IV. Combined electromechanical loading , 1989 .
[31] Barbara Kaltenbacher,et al. Efficient Modeling of Ferroelectric Behavior for the Analysis of Piezoceramic Actuators , 2008 .
[32] Rong-Fong Fung,et al. Hysteresis identification and dynamic responses of the impact drive mechanism , 2005 .
[33] D. H. Everett. A general approach to hysteresis. Part 3.—A formal treatment of the independent domain model of hysteresis , 1954 .
[34] Michael Goldfarb,et al. Behavioral implications of piezoelectric stack actuators for control of micromanipulation , 1996, Proceedings of IEEE International Conference on Robotics and Automation.
[35] Marc Kamlah,et al. Finite element analysis of piezoceramic components taking into account ferroelectric hysteresis behavior , 2001 .
[36] Sven Klinkel,et al. A constitutive model for magnetostrictive and piezoelectric materials , 2009 .
[37] Gary H. Koopmann,et al. Heat generation of a piezoceramic induced-strain actuator embedded in a glass/epoxy composite panel , 1996, Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.
[38] Cheng Yap Shee,et al. Automatic Hysteresis Modeling of Piezoelectric Micromanipulator in Vision-Guided Micromanipulation Systems , 2012, IEEE/ASME Transactions on Mechatronics.
[39] 權寧住,et al. Mechatronics , 2019, CIRP Encyclopedia of Production Engineering.
[40] Gi Sang Choi,et al. Tracking position control of piezoelectric actuators for periodic reference inputs , 2002 .
[41] G. E. Martin. On the Theory of Segmented Electromechanical Systems , 1964 .
[42] I. Mayergoyz. Mathematical models of hysteresis and their applications , 2003 .
[43] Paolo Nistri,et al. Mathematical Models for Hysteresis , 1993, SIAM Rev..
[44] Fujii Tetsu,et al. Laminar natural-convective heat transfer from the outer surface of a vertical cylinder , 1970 .
[45] M. Schäfer. Numerik im Maschinenbau , 1999 .
[46] Saeid Bashash,et al. Robust Multiple Frequency Trajectory Tracking Control of Piezoelectrically Driven Micro/Nanopositioning Systems , 2007, IEEE Transactions on Control Systems Technology.
[47] D. Jiles,et al. Theory of ferromagnetic hysteresis , 1986 .
[48] H. D. Baehr,et al. Wärme- und Stoffübertragung , 1994 .
[49] Mohamed S. Gadala,et al. Self-heat generation in piezoelectric stack actuators used in fuel injectors , 2009 .
[50] Gérard A. Maugin,et al. Thermodynamical formulation for coupled electromechanical hysteresis effects. III: Parameter identification , 1989 .
[51] K. Spanner,et al. Survey of the Various Operating Principles of Ultrasonic Piezomotors , 2006 .
[52] Volker Gnielinski,et al. Berechnung mittlerer Wärme- und Stoffübergangskoeffizienten an laminar und turbulent überströmten Einzelkörpern mit Hilfe einer einheitlichen Gleichung , 1975 .
[53] G. Kruger,et al. Domain wall motion concept to describe ferroelectric rhombohedral PLZT ceramics , 1976 .
[54] Jan G. Korvink,et al. Preserving the film coefficient as a parameter in the compact thermal model for fast electrothermal simulation , 2005, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.
[55] Isaak D. Mayergoyz,et al. Hysteresis models from the mathematical and control theory points of view , 1985 .
[56] Dennis S. Bernstein,et al. Semilinear Duhem model for rate-independent and rate-dependent hysteresis , 2005, IEEE Transactions on Automatic Control.
[57] Yonghong Tan,et al. RBF neural networks hysteresis modelling for piezoceramic actuator using hybrid model , 2007 .
[58] Wei Tech Ang,et al. Feedforward Controller With Inverse Rate-Dependent Model for Piezoelectric Actuators in Trajectory-Tracking Applications , 2007, IEEE/ASME Transactions on Mechatronics.
[59] J.A. De Abreu-Garcia,et al. Tracking control of a piezoceramic actuator with hysteresis compensation using inverse Preisach model , 2005, IEEE/ASME Transactions on Mechatronics.
[60] J. Wen,et al. Preisach modeling of piezoceramic and shape memory alloy hysteresis , 1995, Proceedings of International Conference on Control Applications.
[61] Christian Kaletsch. Vergleich einer piezoelektrischen Lagerabstützung mit Quetschöldämpfern zur Schwingungsreduktion eines elastischen Rotors , 2011 .
[62] Thomas E. Diller,et al. Advances in Heat Flux Measurements , 1993 .
[63] D. H. Everett,et al. A general approach to hysteresis , 1952 .
[64] David L. Atherton,et al. CORRIGENDUM: Theory of the magnetisation process in ferromagnets and its application to the magnetomechanical effect , 1984 .
[65] Alexander Sutor,et al. A Preisach-based hysteresis model for magnetic and ferroelectric hysteresis , 2010 .
[66] R. Ben Mrad,et al. A discrete-time compensation algorithm for hysteresis in piezoceramic actuators , 2004 .
[67] Jinhao Qiu,et al. A new simple asymmetric hysteresis operator and its application to inverse control of piezoelectric actuators , 2008, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.
[68] T. Hemsel,et al. Survey of the present state of the art of piezoelectric linear motors , 2000, Ultrasonics.
[69] Pavel M. Chaplya,et al. Dielectric and piezoelectric response of lead zirconate–lead titanate at high electric and mechanical loads in terms of non-180° domain wall motion , 2001 .
[70] Gwo-Ruey Yu. Adaptive PI Control of Piezoelectric Systems Using Takagi-Sugeno Fuzzy Logic , 2006, JCIS.
[71] Cameron N. Riviere,et al. Adaptive rate-dependent feedforward controller for hysteretic piezoelectric actuator , 2008, 2008 IEEE International Conference on Robotics and Automation.
[72] I. Mayergoyz,et al. The Preisach model and hysteretic energy losses , 1987 .
[73] Hewon Jung,et al. Tracking control of piezoelectric actuators , 2001 .
[74] Hartmut Janocha,et al. Simultane Messung charakteristischer Kenngrößen von Piezoaktoren im Großsignalbetrieb (Simultaneous Measurement of Characteristic Values of Piezoelectric Actuators at Large-signal Operation) , 2002 .
[75] S O Reza Moheimani,et al. Invited review article: accurate and fast nanopositioning with piezoelectric tube scanners: emerging trends and future challenges. , 2008, The Review of scientific instruments.
[76] Leroy S. Fletcher,et al. Contact heat transfer: the last decade , 1986 .
[77] Chad M. Landis,et al. Non-linear constitutive modeling of ferroelectrics , 2004 .
[78] Oriol Gomis-Bellmunt,et al. Modeling and validation of a piezoelectric actuator , 2007 .
[79] T.-J. Yeh,et al. Modeling and Identification of Hysteresis in Piezoelectric Actuators , 2006 .
[80] T. Low,et al. Modeling of a three-layer piezoelectric bimorph beam with hysteresis , 1995 .
[81] Ping Ge,et al. Tracking control of a piezoceramic actuator , 1996, IEEE Trans. Control. Syst. Technol..
[82] Jan Swevers,et al. An integrated friction model structure with improved presliding behavior for accurate friction compensation , 1998, IEEE Trans. Autom. Control..
[83] T.-J. Yeh,et al. An integrated physical model that characterizes creep and hysteresis in piezoelectric actuators , 2008, Simul. Model. Pract. Theory.
[84] John A. Nelder,et al. A Simplex Method for Function Minimization , 1965, Comput. J..
[85] H. Hu,et al. Enhancement of tracking ability in piezoceramic actuators subject to dynamic excitation conditions , 2005, IEEE/ASME Transactions on Mechatronics.
[86] Vittorio Basso,et al. RANDOM FREE ENERGY MODEL FOR THE DESCRIPTION OF HYSTERESIS , 1996 .
[87] R. Ben Mrad,et al. On the classical Preisach model for hysteresis in piezoceramic actuators , 2003 .
[88] Wei Zhu,et al. Non-symmetrical Bouc–Wen model for piezoelectric ceramic actuators , 2012 .
[89] A. Einstein,et al. Die Grundlage der allgemeinen Relativitätstheorie , 1916 .
[90] S. Churchill. A comprehensive correlating equation for laminar, assisting, forced and free convection , 1977 .
[91] P. Dahl. Solid Friction Damping of Mechanical Vibrations , 1976 .
[92] Chih-Jer Lin,et al. PRECISE POSITIONING OF PIEZO-ACTUATED STAGES USING HYSTERESIS-OBSERVER BASED CONTROL , 2005 .
[93] R. Lerch,et al. Modeling and measurement of creep- and rate-dependent hysteresis in ferroelectric actuators , 2011 .
[94] Bertotti. Energetic and thermodynamic aspects of hysteresis. , 1996, Physical review letters.
[95] Christopher R. Bowen,et al. Time–temperature profiles of multi-layer actuators , 2004 .
[96] W. Voigt,et al. Lehrbuch der Kristallphysik , 1966 .
[97] F. Preisach. Über die magnetische Nachwirkung , 1935 .
[98] R. McMeeking,et al. A principle of virtual work for combined electrostatic and mechanical loading of materials , 2007 .
[99] Jan Swevers,et al. The generalized Maxwell-slip model: a novel model for friction Simulation and compensation , 2005, IEEE Transactions on Automatic Control.
[100] Alexander Sutor,et al. A generalized Preisach approach for piezoceramic materials incorporating uniaxial compressive stress , 2012 .
[101] Ridha Ben Mrad,et al. Electromechanical Modeling of Piezoceramic Actuators for Dynamic Loading Applications , 2006 .
[102] G. E. Martin. New Standard for Measurements of Certain Piezoelectric Ceramics , 1963 .